41 resultados para Lettuce downy mildew
Resumo:
The effect of powdery mildew development on photosynthesis, chlorophyll fluorescence, leaf chlorophyll and carotenoid concentrations on three woody plants frequently planted in urban environments was studied. Rates of photosynthetic CO2 fixation were rapidly reduced in two of the three genotypes tested prior to visible signs of infection. Effects on chlorophyll fluorescence (Fo, Fv/Fo, Fv/Fm), leaf chlorophyll and carotenoid content were not manifest until >25 per cent of the leaf area was observed to be covered by mycelial growth indicating reduced photo-synthetic rates during the early stages of infection were not due to degradation of the leaf chloroplast structure. Observation of the fluorescence transient (OJIP curves) showed powdery mildew infection impairs photosynthetic electron transport system by reducing the size but not heterogeneity of the plastoquninone pool, effecting both the acceptor and donor side of photosystem II. Impairment of the photosynthetic electron transport system was reflected by reduced values of a performance index used in this investigation as a measure of photochemical events within photosystem II electron transport. In addition interpretation of the fluorescence data indicated powdery mildew infection may impair the photo-protective process that facilitates the dissipation of excess energy within leaf tissue.
Resumo:
Oak (Quercus robur) powdery mildew is a common and damaging fungal disease. In a local survey at Reading, UK, oak powdery mildew was common on trees of all height classes but was most common on trees of 3-9m. A variety of other fungal species were commonly found growing in association with oak powdery mildew colonies. The abundance of such fungi was estimated through stratified sample surveys for 2.5 years. The taxa most commonly associated with oak powdery mildew were Acremonium sp., Trichoderma sp., Ampelomyces/Phoma sp. and Leptosphaerulina australis. Nearly 90% of mildew colonies were associated with L. australis, which is not generally considered as a mycoparasite or antagonist, in contrast with the other three fungi. Abundance varied between June and October surveys. Acremonium sp. abundance was greater in summer samplings whereas L. australis and Trichoderma sp. abundances were greater in autumn samplings. Ampelomyces/Phoma sp. was never observed in the absence of powdery mildew. Relationships between the mildew-associated fungi and oak powdery mildew appeared curved and differed significantly between sampling years. L. australis was positively correlated with the other three associated fungi studied when powdery mildew was also present. The variety and high population densities of the mildew associated fungi suggest that they may be important in determining the final density of oak mildew and the damage caused by it.
Resumo:
Background: Podosphaera aphanis, the causal agent of strawberry powdery mildew causes significant economic loss worldwide. Methods: We used the diploid strawberry species Fragaria vesca as a model to study plant pathogen interactions. RNA-seq was employed to generate a transcriptome dataset from two accessions, F. vesca ssp. vesca Hawaii 4 (HW) and F. vesca f. semperflorens Yellow Wonder 5AF7 (YW) at 1 d (1 DAI) and 8 d (8 DAI) after infection. Results: Of the total reads identified about 999 million (92%) mapped to the F. vesca genome. These transcripts were derived from a total of 23,470 and 23,464 genes in HW and YW, respectively from the three time points (control, 1 and 8 DAI). Analysis identified 1,567, 1,846 and 1,145 up-regulated genes between control and 1 DAI, control and 8 DAI, and 1 and 8 DAI, respectively in HW. Similarly, 1,336, 1,619 and 968 genes were up-regulated in YW. Also 646, 1,098 and 624 down-regulated genes were identified in HW, while 571, 754 and 627 genes were down-regulated in YW between all three time points, respectively. Conclusion: Investigation of differentially expressed genes (log2 fold changes �5) between control and 1 DAI in both HW and YW identified a large number of genes related to secondary metabolism, signal transduction; transcriptional regulation and disease resistance were highly expressed. These included flavonoid 3´-monooxygenase, peroxidase 15, glucan endo-1,3-β-glucosidase 2, receptor-like kinases, transcription factors, germin-like proteins, F-box proteins, NB-ARC and NBS-LRR proteins. This is the first application of RNA-seq to any pathogen interaction in strawberry
Resumo:
Lettuce is an important leafy vegetable, consumed across the world, containing bitter sesquiterpenoid lactone (SL) compounds that may negatively affect consumer acceptance and consumption. We assessed liking of samples with differing absolute abundance and different ratios of bitter:sweet compounds by analysing recombinant inbred lines (RILs) from an interspecific lettuce mapping population derived from a cross between a wild (L. serriola acc. UC96US23) and domesticated lettuce, (L. sativa, cv. Salinas). We found that the ratio of bitter:sweet compounds was a key determinant of bitterness perception and liking. We were able to demonstrate that SLs such as 8-deoxylactucin-15-sulphate contribute most strongly to bitterness perception, whilst 15-p-hydroxylphenylacetyllactucin-8-sulphate does not contribute to bitter taste. Glucose was the sugar most highly correlated with sweetness perception. There is a genetic basis to the biochemical composition of lettuce. This information will be useful in lettuce breeding programmes in order to produce leaves with more favourable taste profiles.
Resumo:
There are over 500 candidate secreted effector proteins (CSEPs) or Blumeria effector candidates (BECs) specific to the barley powdery mildew pathogen Blumeria graminis f.sp. hordei. The CSEP/BEC proteins are expressed and predicted to be secreted by biotrophic feeding structures called haustoria. Eight BECs are required for the formation of functional haustoria. These include the RNase-like effector BEC1054 (synonym CSEP0064). In order to identify host proteins targeted by BEC1054, recombinant BEC1054 was expressed in E. coli, solubilized, and used in pull-down assays from barley protein extracts. Many putative interactors were identified by LC-MS/MS after subtraction of unspecific binders in negative controls. Therefore, a directed yeast-2-hybrid assay, developed to measure the effectiveness of the interactions in yeast, was used to validate putative interactors. We conclude that BEC1054 may target several host proteins, including a glutathione-S-transferase, a malate dehydrogenase, and a pathogen-related-5 protein isoform, indicating a possible role for BEC1054 in compromising well-known key players of defense and response to pathogens. In addition, BEC1054 interacts with an elongation factor 1 gamma. This study already suggests that BEC1054 plays a central role in barley powdery mildew virulence by acting at several levels.
Resumo:
The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.
Resumo:
The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Seeds of carrot, groundnut, lettuce, oilseed rape and onion were stored hermetically in laminated aluminium foil packets in four environments (dry or ultra-dry moisture contents combined factorially with temperatures of 20 degrees C or -20 degrees C), replicated at several sites. After ten years' hermetic storage, seed moisture content, equilibrium relative humidity, viability (assessed by ability to germinate normally in standard germination tests) and vigour were determined. After a decade, the change in seed moisture content of samples stored at -20 degrees C was small or nil. Except for groundnut and lettuce (where loss in viability was about 8 and 3%, respectively), no loss in viability was detected after 10 years' hermetic storage at -20 degrees C. In all cases, there was no difference in seed survival between moisture contents at this temperature (P > 0.25). Comparison of seed vigour (root length and rate of germination) also confirmed that drying to moisture contents in equilibrium with 10-12% r.h. had no detrimental effect to longevity when stored at -20 degrees C: the only significant (P < 0.05) differences detected were slightly greater root lengths for ultra-dry storage of four of the six seed lots. Seed moisture content had increased after a decade at 20 degrees C (generally to the level in equilibrium with ambient relative humidity). Hence, sub-zero temperature storage helped maintain the long-term integrity of the laminated aluminium foil packets, as well as that of the seeds within.
Resumo:
A model was devised to describe simultaneously the grain masses of water and dry matter against thermal time during grain filling and maturation of winter wheat. The model accounted for a linear increase in water mass of duration anthesis-m(1) (end of rapid water assimilation phase) and rate a, followed by a more stable water mass until in,, after which water mass declined rapidly at rate e. Grain dry matter was described as a linear increase of rate bgf until a maximum size (maxgf) was attained at m(2).The model was fitted to plot data from weekly samples of grains taken from replicated field experiments investigating effects of grain position (apical or medial), fungicide (five contrasting treatments), sowing date (early or late), cultivar (Malacca or Shamrock) and season (2001/2002 and 2002/2003) on grain filling. The model accounted for between 83 and 99% of the variation ( 2) when fitted to data from individual plots, and between 97 and 99% when fitted to treatment means. Endosperm cell number of grains from early-sown plots in the first season were also counted. Differences in maxgf between grain positions and also between cultivars were mostly the result of effects on bgf and were empirically associated with water mass at nil. Fungicide application controlled S. tritici and powdery mildew infection, delayed flag leaf senescence, increased water mass at m(1) (wm(1)), and also increased m(2), bgf and maxgf. Fungicide effects on water mass were detected before fungicide effects on dry matter, but comparison of the effects of individual fungicide treatments showed no evidence that effects on wm(1), nor on endosperm cell numbers at about m(1), were required for fungicide effects on maxgf, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.
Resumo:
The Euro-Mediterranean region is an important centre for the diversity of crop wild relatives. Crops, such as oats (Avena sativa), sugar beet (Beta vulgaris), apple (Malus domestica), annual meadow grass (Festuca pratensis), white clover (Trifolium repens), arnica (Arnica montana), asparagus (Asparagus officinalis), lettuce (Lactuca sativa), and sage (Salvia officinalis) etc., all have wild relatives in the region. The European Community funded project, PGR Forum (www.pgrforum.org) is building an online information system to provide access to crop wild relative data to a broad user community; including plant breeders, protected area managers, policy-makers, conservationists, taxonomists and the wider public. The system will include data on uses, geographical distribution, biology, population and habitat information, threats (including IUCN Red List assessments) and conservation actions. This information is vital for the continued sustainable utilisation and conservation of crop wild relatives. Two major databases have been utilised as the backbone to a Euro-Mediterranean crop wild relative catalogue, which forms the core of the information system: Euro+Med PlantBase (www.euromed.org.uk) and Mansfeld’s World Database of Agricultural and Horticultural Crops (http://mansfeld.ipk-gatersleben.de). By matching the genera found within the two databases, a preliminary list of crop wild relatives has been produced. Around 20,000 of the 30,000+ species listed in Euro+Med PlantBase can be considered crop wild relatives, i.e. those species found within the same genus as a crop. The list is currently being refined by implementing a priority ranking system based on the degree of relatedness of taxa to the associated crop.
Resumo:
Spores of the hyperparasite Acremonium alternatum reduced powdery mildew infection by Leveillula taurica on greenhouse tomato. The effect was slightly increased when spores were applied killed, and therefore not due to direct parasitism. The effect was systemic, protecting untreated leaves above the treated ones. Spores killed by heat had more effect than when killed by UV, so the effect was presumably due to induction of host resistance by substances released when cells were heat killed. The size of the effect depended upon leaf age and level of infection. Effects on primary infection and expansion of successful infections appear to be under independent control.
Resumo:
Four foliar and two stem-base pathogens were inoculated onto wheat plants grown in different substrates in pot experiments. Soils from four different UK locations were each treated in three ways: (i) straw incorporated in the field at 10 t ha−1 several months previously; (ii) silicon fertilization at 100 mg L−1 during the experiment; and (iii) no amendments. A sand and vermiculite mix was used with and without silicon amendment. The silicon treatment increased plant silica concentrations in all experiments, but incorporating straw was not associated with raised plant silica concentrations. Blumeria graminis and Puccinia recondita were inoculated by shaking infected plants over the test plants, followed by suitable humid periods. The silicon treatment reduced powdery mildew (B. graminis) substantially in sand and vermiculite and in two of the soils, but there were no effects on the slight infection by brown rust (P. recondita). Phaeosphaeria nodorum and Mycosphaerella graminicola were inoculated as conidial suspensions. Leaf spot caused by P. nodorum was reduced in silicon-amended sand and vermiculite; soil was not tested. Symptoms of septoria leaf blotch caused by M. graminicola were reduced by silicon amendment in a severely infected sand and vermiculite experiment but not in soil or a slightly infected sand and vermiculite experiment. Oculimacula yallundae (eyespot) and Fusarium culmorum (brown foot rot) were inoculated as agar plugs on the stem base. Severity of O. yallundae was reduced by silicon amendment of two of the soils but not sand and vermiculite; brown foot rot symptoms caused by F. culmorum were unaffected by silicon amendment. The straw treatment reduced severity of powdery mildew but did not detectably affect the other pathogens. Both straw and silicon treatments appeared to increase plant resistance to all diseases only under high disease pressure.