32 resultados para Lateral Logic
Resumo:
The authors describe the design of a fuzzy logic controller for the control of a planar two-link manipulator. The plant is quasi-decoupled with respect to gravity. Complete decoupling is not achieved due to the nonoptimal nature of the expert rules. The performance of the fuzzy controller is compared to that of the critically damped computed torque controller. Results are presented complete with robustness tests.
Resumo:
This paper describes the development of an experimental distributed fuzzy control system for heating and ventilation (HVAC) systems within a building. Each local control loop is affected by a number of local variables, as well as information from neighboring controllers. By including this additional information it is hoped that a more equal allocation of resources can be achieved.
Resumo:
This article focuses on the final report of Lord Butler’s review of British intelligence on weapons of mass destruction (WMD), specifically on its treatment of the accuracy of the use of intelligence on Iraqi WMD in a government dossier published in September 2002 ahead of the 2003 Iraq war. In the report, the demonstration of the accuracy of the “September Dossier” hinges on the insertion of tables that compare side-by-side quotations from this document and from intelligence assessments. The analysis of the textual and visual methods by which the report is written reveals how the logic of the comparative tables is missed in the Butler report: the logic of these tables requires that the comparison between quotations from the two documents should be performed at the level of their details but the Butler report performs its comparison only at a broad and general level.
Resumo:
Lateral epicondylitis (LE) is hypothesized to occur as a result of repetitive, strenuous and abnormal postural activities of the elbow and wrist. There is still a lack of understanding of how wrist and forearm positions contribute to this condition during common manual tasks. In this study the wrist kinematics and the wrist extensors’ musculotendon patterns were investigated during a manual task believed to elicit LE symptoms in susceptible subjects. A 42-year-old right-handed male, with no history of LE, performed a repetitive movement involving pushing and turning a spring-loaded mechanism. Motion capture data were acquired for the upper limb and an inverse kinematic and dynamic analysis was subsequently carried out. Results illustrated the presence of eccentric contractions sustained by the extensor carpi radialis longus (ECRL), together with an almost constant level of tendon strain of both extensor carpi radialis brevis (ECRB) and extensor digitorum communis lateral (EDCL) branch. It is believed that these factors may partly contribute to the onset of LE as they are both responsible for the creation of microtears at the tendons’ origins. The methodology of this study can be used to explore muscle actions during movements that might cause or exacerbate LE.
Resumo:
In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates.
Resumo:
This essay aims to make a contribution to the conversation between IR and nationalism literatures by considering a particular question: What is the relationship between interstate military competition and the emergence of nationalism as a potent force in world politics? The conventional wisdom among international security scholars, especially neorealists, holds that nationalism can be more or less treated like a “technology” that allowed states to extract significant resources as well as manpower from their respective populations. This paper underlines some of the problems involved with this perspective and pushes forward an interpretation that is based on the logic of political survival. I argue that nationalism’s emergence as a powerful force in world politics followed from the “mutation” and absorption of the universalistic/cosmopolitan republican ideas that gained temporary primacy in Europe during the eighteenth century into particularistic nationalist ideologies. This transformation, in turn, can be best explained by the French Revolution’s dramatic impacts on rulers’ political survival calculi vis-à-vis both interstate and domestic political challenges. The analysis offered in this essay contributes to our understanding of the relationship between IR and nationalism while also highlighting the potential value of the political survival framework for exploring macrohistorical puzzles.
Resumo:
Chaotic traffic, prevalent in many countries, is marked by a large number of vehicles driving with different speeds without following any predefined speed lanes. Such traffic rules out using any planning algorithm for these vehicles which is based upon the maintenance of speed lanes and lane changes. The absence of speed lanes may imply more bandwidth and easier overtaking in cases where vehicles vary considerably in both their size and speed. Inspired by the performance of artificial potential fields in the planning of mobile robots, we propose here lateral potentials as measures to enable vehicles to decide about their lateral positions on the road. Each vehicle is subjected to a potential from obstacles and vehicles in front, road boundaries, obstacles and vehicles to the side and higher speed vehicles to the rear. All these potentials are lateral and only govern steering the vehicle. A speed control mechanism is also used for longitudinal control of vehicle. The proposed system is shown to perform well for obstacle avoidance, vehicle following and overtaking behaviors.
Resumo:
The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.
Resumo:
Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Therefore, understanding the development and architecture of roots holds potential for the manipulation of root traits to improve the productivity and sustainability of agricultural systems and to better understand and manage natural ecosystems. While lateral root development is a traceable process along the primary root and different stages can be found along this longitudinal axis of time and development, root system architecture is complex and difficult to quantify. Here, we comment on assays to describe lateral root phenotypes and propose ways to move forward regarding the description of root system architecture, also considering crops and the environment.
Resumo:
In order to enhance the quality of care, healthcare organisations are increasingly resorting to clinical decision support systems (CDSSs), which provide physicians with appropriate health care decisions or recommendations. However, how to explicitly represent the diverse vague medical knowledge and effectively reason in the decision-making process are still problems we are confronted. In this paper, we incorporate semiotics into fuzzy logic to enhance CDSSs with the aim of providing both the abilities of describing medical domain concepts contextually and reasoning with vague knowledge. A semiotically inspired fuzzy CDSSs framework is presented, based on which the vague knowledge representation and reasoning process are demonstrated.
Resumo:
The modulation of air–sea heat fluxes by geostrophic eddies due to the stirring of temperature at the sea surface is discussed and quantified. It is argued that the damping of eddy temperature variance by such air–sea fluxes enhances the dissipation of surface temperature fields. Depending on the time scale of damping relative to that of the eddying motions, surface eddy diffusivities can be significantly enhanced over interior values. The issues are explored and quantified in a controlled setting by driving a tracer field, a proxy for sea surface temperature, with surface altimetric observations in the Antarctic Circumpolar Current (ACC) of the Southern Ocean. A new, tracer-based diagnostic of eddy diffusivity is introduced, which is related to the Nakamura effective diffusivity. Using this, the mixed layer lateral eddy diffusivities associated with (i) eddy stirring and small-scale mixing and (ii) surface damping by air–sea interaction is quantified. In the ACC, a diffusivity associated with surface damping of a comparable magnitude to that associated with eddy stirring (;500 m2 s21) is found. In frontal regions prevalent in the ACC, an augmentation of surface lateral eddy diffusivities of this magnitude is equivalent to an air–sea flux of 100 W m22 acting over a mixed layer depth of 100 m, a very significant effect. Finally, the implications for other tracer fields such as salinity, dissolved gases, and chlorophyll are discussed. Different tracers are found to have surface eddy diffusivities that differ significantly in magnitude.
Resumo:
In mammalian cells, inflammation is mainly mediated by the binding of tumor necrosis factor alpha to tumor necrosis factor receptor 1. In this study, we investigated lateral dynamics of TNF-R1 before and after ligand binding using high-density single-particle tracking in combination with photoactivated localization microscopy. Our single-molecule data indicates the presence of tumor necrosis factor receptor 1 with different mobilities in the plasma membrane, suggesting different molecular organizations. Cholesterol depletion led to a decrease of slow receptor species and a strong increase in the average diffusion coefficient. Moreover, as a consequence of tumor necrosis factor-alpha treatment, the mean diffusion coefficient moderately increased while its distribution narrowed. Based on our observation, we propose a refined mechanism on the structural arrangement and activation of tumor necrosis factor receptor 1 in the plasma membrane.