26 resultados para Laser scanning confocal microscope
Resumo:
Earthworms of the family Lumbricidae, which includes many common species, produce and secrete up to millimeter-sized calcite granules, and the intricate fine-scale zoning of their constituent crystals is unique for a biomineral. Granule calcite is produced by crystallization of amorphous calcium carbonate (ACC) that initially precipitates within the earthworm calciferous glands, then forms protogranules by accretion on quartz grain cores. Crystallization of ACC is mediated by migrating fluid films and is largely complete within 24 11 of ACC production and before granules leave the earthworm. Variations in the density of defects formed as a byproduct of trace element incorporation during calcite crystall growth have generated zoning that can be resolved by cathodoluminescence imaging at ultraviolet to blue wavelengths and using the novel technique of scanning electron microscope charge contrast imaging. Mapping of calcite crystal orientations by electron backscatter diffraction reveals an approximate radial fabric to the granules that reflects crystal growth from internal nucleation sites toward their margins. The survival within granules of ACC inclusions for months after they enter soils indicates that they crystallize only within the earthworm and in the presence of fluids containing biochemical catalysts. The earthworm probably promotes crystallization of ACC in order to prevent remobilization of the calcium carbonate by dissolution. Calcite granules vividly illustrate the role of transient precursors in biomineralization, but the underlying question of why earth-worms produce granules in volumes sufficient to have a measurable impact on soil carbon cycling remains to be answered.
Resumo:
This paper specifically examines the implantation of a microelectrode array into the median nerve of the left arm of a healthy male volunteer. The objective was to establish a bi-directional link between the human nervous system and a computer, via a unique interface module. This is the first time that such a device has been used with a healthy human. The aim of the study was to assess the efficacy, compatibility, and long term operability of the neural implant in allowing the subject to perceive feedback stimulation and for neural activity to be detected and processed such that the subject could interact with remote technologies. A case study demonstrating real-time control of an instrumented prosthetic hand by means of the bi-directional link is given. The implantation did not result in infection, and scanning electron microscope images of the implant post extraction have not indicated significant rejection of the implant by the body. No perceivable loss of hand sensation or motion control was experienced by the subject while the implant was in place, and further testing of the subject following the removal of the implant has not indicated any measurable long term defects. The implant was extracted after 96 days. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
The fabrication and characterization of micromachined reduced-height air-filled rectangular waveguide components suitable for integration is reported in this paper. The lithographic technique used permits structures with heights of up to 100 μm to be successfully constructed in a repeatable manner. Waveguide S-parameter measurements at frequencies between 75-110 GHz using a vector network analyzer demonstrate low loss propagation in the TE10 mode reaching 0.2 dB per wavelength. Scanning electron microscope photographs of conventional and micromachined waveguides show that the fabrication technique can provide a superior surface finish than possible with commercially available components. In order to circumvent problems in efficiently coupling free-space propagating beams to the reduced-height G-band waveguides, as well as to characterize them using quasi-optical techniques, a novel integrated micromachined slotted horn antenna has been designed and fabricated, E-, H-, and D-plane far-field antenna pattern measurements at different frequencies using a quasi-optical setup show that the fabricated structures are optimized for 180-GHz operation with an E-plane half-power beamwidth of 32° elevated 35° above the substrate, a symmetrical H-plane pattern with a half-power beamwidth of 23° and a maximum D-plane cross-polar level of -33 dB. Far-field pattern simulations using HFSS show good agreement with experimental results.
Resumo:
The effect of high-pressure (HP) pretreatment on oil uptake of potato slices is examined in this paper. Potato slices were treated either by HP or thermal blanching, or a combination of thermal blanching followed by HP prior to frying. The effect of HP on starch gelatinization and potato microstructure was assessed by differential scanning calorimeter and environmental scanning electron microscope (ESEM), respectively. After treatments, the slices were fried in sunflower oil at 185 °C for a predetermined time. Frying time was either kept constant (4 min) or varied according to the time needed to reach a desired moisture content of ≈2%. The high pressure applied in this study was found not to be sufficient to cause a significant degree of starch gelatinization. Analysis of the ESEM images showed that blanching had a limited effect on cell wall integrity. HP pretreatment was found to increase the oil uptake marginally. When frying for a fixed time, the highest total oil content was found in slices treated at 200 MPa for 5 min. The oil content was found to increase significantly (p<0.05) to 41.23±1.82 compared to 29.03±0.21 in the control slices. The same effect of pressure on oil content was found when the time of frying varied. On the other hand, HP pretreatment was found to decrease the frying time required to achieve a given moisture content. Thus, high-pressure pretreatment may be used to reduce the frying time, but not oil uptake.
Resumo:
A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the NO-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Employing immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-3H-Arginine to L-3H-Citrulline in a Ca2+/Calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform the activity of which is compromised in patients with coronary artery disease.
Resumo:
Diaminofluoresceins are widely used probes for detection and intracellular localization of NO formation in cultured/isolated cells and intact tissues. The fluorinated derivative, 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM), has gained increasing popularity in recent years due to its improved NO-sensitivity, pH-stability, and resistance to photo-bleaching compared to the first-generation compound, DAF-2. Detection of NO production by either reagent relies on conversion of the parent compound into a fluorescent triazole, DAF-FM-T and DAF-2-T, respectively. While this reaction is specific for NO and/or reactive nitrosating species, it is also affected by the presence of oxidants/antioxidants. Moreover, the reaction with other molecules can lead to the formation of fluorescent products other than the expected triazole. Thus additional controls and structural confirmation of the reaction products are essential. Using human red blood cells as an exemplary cellular system we here describe robust protocols for the analysis of intracellular DAF-FM-T formation using an array of fluorescence-based methods (laser-scanning fluorescence microscopy, flow cytometry and fluorimetry) and analytical separation techniques (reversed-phase HPLC and LC-MS/MS). When used in combination, these assays afford unequivocal identification of the fluorescent signal as being derived from NO and are applicable to most other cellular systems without or with only minor modifications.
Resumo:
Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.
Resumo:
Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3 h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.
Resumo:
We introduce semiconductor quantum dot-based fluorescence imaging with approximately 2-fold increased optical resolution in three dimensions as a method that allows both studying cellular structures and spatial organization of biomolecules in membranes and subcellular organelles. Target biomolecules are labelled with quantum dots via immunocytochemistry. The resolution enhancement is achieved by three-photon absorption of quantum dots and subsequent fluorescence emission from a higher-order excitonic state. Different from conventional multiphoton microscopy, this approach can be realized on any confocal microscope without the need for pulsed excitation light. We demonstrate quantum dot triexciton imaging (QDTI) of the microtubule network of U373 cells, 3D imaging of TNF receptor 2 on the plasma membrane of HeLa cells, and multicolor 3D imaging of mitochondrial cytochrome c oxidase and actin in COS-7 cells.
Resumo:
Due to their broad differentiation potential and their persistence into adulthood, human neural crest-derived stem cells (NCSCs) harbour great potential for autologous cellular therapies, which include the treatment of neurodegenerative diseases and replacement of complex tissues containing various cell types, as in the case of musculoskeletal injuries. The use of serum-free approaches often results in insufficient proliferation of stem cells and foetal calf serum implicates the use of xenogenic medium components. Thus, there is much need for alternative cultivation strategies. In this study we describe for the first time a novel, human blood plasma based semi-solid medium for cultivation of human NCSCs. We cultivated human neural crest-derived inferior turbinate stem cells (ITSCs) within a blood plasma matrix, where they revealed higher proliferation rates compared to a standard serum-free approach. Three-dimensionality of the matrix was investigated using helium ion microscopy. ITSCs grew within the matrix as revealed by laser scanning microscopy. Genetic stability and maintenance of stemness characteristics were assured in 3D cultivated ITSCs, as demonstrated by unchanged expression profile and the capability for self-renewal. ITSCs pre-cultivated in the 3D matrix differentiated efficiently into ectodermal and mesodermal cell types, particularly including osteogenic cell types. Furthermore, ITSCs cultivated as described here could be easily infected with lentiviruses directly in substrate for potential tracing or gene therapeutic approaches. Taken together, the use of human blood plasma as an additive for a completely defined medium points towards a personalisable and autologous cultivation of human neural crest-derived stem cells under clinical grade conditions.
Resumo:
Fluvial redeposition of stone artifacts is a major complicating factor in the interpretation of Lower Palaeolithic open-air archaeological sites. However, the microscopic examination of lithic surfaces may provide valuable background information on the transport history of artifacts, particularly in low energy settings. Replica flint artifacts were therefore abraded in an annular flume and examined with a scanning electron microscope. Results showed that abrasion time, sediment size, and artifact transport mode were very sensitive predictors of microscopic surface abrasion, ridge width, and edge damage (p < 0.000). These results suggest that patterns of micro-abrasion of stone artifacts may enhance understanding of archaeological assemblage formation in fluvial contexts