50 resultados para LINEAR-REGRESSION MODELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of mid-latitude windstorms is related to strong socio-economic effects. For detailed and reliable regional impact studies, large datasets of high-resolution wind fields are required. In this study, a statistical downscaling approach in combination with dynamical downscaling is introduced to derive storm related gust speeds on a high-resolution grid over Europe. Multiple linear regression models are trained using reanalysis data and wind gusts from regional climate model simulations for a sample of 100 top ranking windstorm events. The method is computationally inexpensive and reproduces individual windstorm footprints adequately. Compared to observations, the results for Germany are at least as good as pure dynamical downscaling. This new tool can be easily applied to large ensembles of general circulation model simulations and thus contribute to a better understanding of the regional impact of windstorms based on decadal and climate change projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects. AIM: We conducted a case-cohort study to investigate the associations of SNPs in candidate genes with weight change during an average of 6.8 years of follow-up and to examine the potential effect modification by glycemic index (GI) and protein intake. METHODS AND FINDINGS: Participants, aged 20-60 years at baseline, came from five European countries. Cases ('weight gainers') were selected from the total eligible cohort (n = 50,293) as those with the greatest unexplained annual weight gain (n = 5,584). A random subcohort (n = 6,566) was drawn with the intention to obtain an equal number of cases and noncases (n = 5,507). We genotyped 134 SNPs that captured all common genetic variation across the 15 candidate genes; 123 met the quality control criteria. Each SNP was tested for association with the risk of being a 'weight gainer' (logistic regression models) in the case-noncase data and with weight gain (linear regression models) in the random subcohort data. After accounting for multiple testing, none of the SNPs was significantly associated with weight change. Furthermore, we observed no significant effect modification by dietary factors, except for SNP rs7180849 in the neuromedin β gene (NMB). Carriers of the minor allele had a more pronounced weight gain at a higher GI (P = 2 x 10⁻⁷). CONCLUSIONS: We found no evidence of association between SNPs in the studied hypothalamic genes with weight change. The interaction between GI and NMB SNP rs7180849 needs further confirmation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Several studies have shown that adherence to the Mediterranean Diet measured by using the Mediterranean diet score (MDS) is associated with lower obesity risk. The newly proposed Nordic Diet could hold similar beneficial effects. Because of the increasing focus on the interaction between diet and genetic predisposition to adiposity, studies should consider both diet and genetics. OBJECTIVE: We investigated whether FTO rs9939609 and TCF7L2 rs7903146 modified the association between the MDS and Nordic diet score (NDS) and changes in weight (Δweight), waist circumference (ΔWC), and waist circumference adjusted for body mass index (BMI) (ΔWCBMI). DESIGN: We conducted a case-cohort study with a median follow-up of 6.8 y that included 11,048 participants from 5 European countries; 5552 of these subjects were cases defined as individuals with the greatest degree of unexplained weight gain during follow-up. A randomly selected subcohort included 6548 participants, including 5496 noncases. Cases and noncases were compared in analyses by using logistic regression. Continuous traits (ie, Δweight, ΔWC, and ΔWCBMI) were analyzed by using linear regression models in the random subcohort. Interactions were tested by including interaction terms in models. RESULTS: A higher MDS was significantly inversely associated with case status (OR: 0.98; 95% CI: 0.96, 1.00), ΔWC (β = -0.010 cm/y; 95% CI: -0.020, -0.001 cm/y), and ΔWCBMI (β = -0.008; 95% CI:-0.015, -0.001) per 1-point increment but not Δweight (P = 0.53). The NDS was not significantly associated with any outcome. There was a borderline significant interaction between the MDS and TCF7L2 rs7903146 on weight gain (P = 0.05), which suggested a beneficial effect of the MDS only in subjects who carried 1 or 2 risk alleles. FTO did not modify observed associations. CONCLUSIONS: A high MDS is associated with a lower ΔWC and ΔWCBMI, regardless of FTO and TCF7L2 risk alleles. For Δweight, findings were less clear, but the effect may depend on the TCF7L2 rs7903146 variant. The NDS was not associated with anthropometric changes during follow-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose When consumers buy online, they are often confronted with consumer reviews. A negative consumer review on an online shopping website may keep consumers from buying the product. Therefore, negative online consumer reviews are a serious problem for brands. This paper aims to investigate the effects of different response options to a negative consumer review. Design/methodology/approach In an online experiment of 446 participants different response options towards a negative consumer review on an online shopping website are examined. The experimental data is analysed with simple linear regression models using product purchase intentions as the outcome variable. Findings The results indicate that a positive customer review counteracts a negative consumer review more effectively than a positive brand response, whereas brand strength moderates this relationship. Including a reference to an independent, trusted source in a brand or a customer response is only a limited strategy for increasing the effectiveness of a response. Research limitations/implications Additional research in other product categories and with other subjects than students is suggested to validate the findings. In future research, multiple degrees of the phrasing’s strength of the reference could be used. Practical implications Assuming high quality products, brands should encourage their customers to write reviews. Strong brands can also reassure consumers by responding whereas weak brands cannot. Originality/value This research contributes to the online consumer reviews literature with new insights about the role of brand strength and referencing to an independent, trusted source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the effects of climate variability on maize (Zea mays L.) yield in Sri Lanka at different spatial scales. Biophysical data from the Department of Agriculture (DOA) in Sri Lanka for six major maize-growing districts (Ampara, Anuradhapura, Badulla, Hambantota, Moneragala, and Kurunegala) from 1990 to 2010 were analyzed. Simple linear regression models were fitted to observed climate data and detrended maize yield to identify significant correlations. The correlation between first differences of maize yield and climate (r) was further investigated at 0.50° grid scale using interpolated climate data. After 2003, significantly positive (p < 0.01) yield trends varied from 154 kg ha–1 yr–1 to 360 kg ha–1 yr–1. The correlations between maize yield and climate reported that five out of six districts were significant at 10% level. Rainfall had a consistent significant (p < 0.10) positive impact on maize yield in Anuradhapura, Hambantota, and Moneragala, where seasonal total rainfall together with high temperature (“hot-dry”) are the key limitations. Further, the seasonal mean temperature had a negative impact on maize yield in Moneragala (“hot-dry”), the only district that showed high temperatures. Badulla district (“cold-dry”) reported a significant (r = 0.38) positive correlation with mean seasonal temperature, indicating higher potential toward increasing temperatures. Each 1°C rise in seasonal mean temperature reduced maize yield by about 5% from 1990 to 2010. Overall, there was a reasonable correlation between district maize yield and seasonal climate in most of the districts within the maize belt of Sri Lanka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dietary intervention studies suggest that flavan-3-ol intake can improve vascular function and reduce the risk of cardiovascular diseases (CVD). However, results from prospective studies failed to show a consistent beneficial effect. Objective: To investigate associations between flavan-3-ol intake and CVD risk in the Norfolk arm of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk). Design: Data was available from 24,885 (11,252 men; 13,633 women) participants, recruited between 1993 and 1997 into the EPIC-Norfolk study. Flavan-3-ol intake was assessed using 7-day food diaries and the FLAVIOLA Flavanol Food Composition database. Missing data for plasma cholesterol and vitamin C were imputed using multiple imputation. Associations between flavan-3-ol intake and blood pressure at baseline were determined using linear regression models. Associations with CVD risk were estimated using Cox regression analyses. Results: Median intake of total flavan-3-ols was 1034 mg/d (range: 0 – 8531 mg/d) for men and 970 mg/d (0 – 6695 mg/d) for women, median intake of flavan-3-ol monomers was 233 mg/d (0 – 3248 mg/d) for men and 217 (0 – 2712 mg/d) for women. There were no consistent associations between flavan-3-ol monomer intake and baseline systolic and diastolic blood pressure (BP). After 286,147 person-years of follow up, there were 8463 cardio-vascular events and 1987 CVD related deaths; no consistent association between flavan-3-ol intake and CVD risk (HR 0.93, 95% CI:0.87; 1.00; Q1 vs Q5) or mortality was observed (HR 0.93, 95% CI: 0.84; 1.04). Conclusions: Flavan-3-ol intake in EPIC-Norfolk is not sufficient to achieve a statistically significant reduction in CVD risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (k(l)), 3) growth (k(g)), and the efficiency of utilization of body stores for milk production (k(t)). Traditionally, these have been determined using linear regression methods to analyze energy balance data from calorimetry experiments. Many studies have highlighted a number of concerns over current energy feeding systems particularly in relation to these key parameters, and the linear models used for analyzing. Therefore, a database containing 652 dairy cow observations was assembled from calorimetry studies in the United Kingdom. Five functions for analyzing energy balance data were considered: straight line, two diminishing returns functions, (the Mitscherlich and the rectangular hyperbola), and two sigmoidal functions (the logistic and the Gompertz). Meta-analysis of the data was conducted to estimate k(g) and k(t). Values of 0.83 to 0.86 and 0.66 to 0.69 were obtained for k(g) and k(t) using all the functions (with standard errors of 0.028 and 0.027), respectively, which were considerably different from previous reports of 0.60 to 0.75 for k(g) and 0.82 to 0.84 for k(t). Using the estimated values of k(g) and k(t), the data were corrected to allow for body tissue changes. Based on the definition of k(l) as the derivative of the ratio of milk energy derived from MEI to MEI directed towards milk production, MEm and k(l) were determined. Meta-analysis of the pooled data showed that the average k(l) ranged from 0.50 to 0.58 and MEm ranged between 0.34 and 0.64 MJ/kg of BW0.75 per day. Although the constrained Mitscherlich fitted the data as good as the straight line, more observations at high energy intakes (above 2.4 MJ/kg of BW0.75 per day) are required to determine conclusively whether milk energy is related to MEI linearly or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of the long-term wind resource at a prospective site based on a relatively short on-site measurement campaign is an indispensable task in the development of a commercial wind farm. The typical industry approach is based on the measure-correlate-predict �MCP� method where a relational model between the site wind velocity data and the data obtained from a suitable reference site is built from concurrent records. In a subsequent step, a long-term prediction for the prospective site is obtained from a combination of the relational model and the historic reference data. In the present paper, a systematic study is presented where three new MCP models, together with two published reference models �a simple linear regression and the variance ratio method�, have been evaluated based on concurrent synthetic wind speed time series for two sites, simulating the prospective and the reference site. The synthetic method has the advantage of generating time series with the desired statistical properties, including Weibull scale and shape factors, required to evaluate the five methods under all plausible conditions. In this work, first a systematic discussion of the statistical fundamentals behind MCP methods is provided and three new models, one based on a nonlinear regression and two �termed kernel methods� derived from the use of conditional probability density functions, are proposed. All models are evaluated by using five metrics under a wide range of values of the correlation coefficient, the Weibull scale, and the Weibull shape factor. Only one of all models, a kernel method based on bivariate Weibull probability functions, is capable of accurately predicting all performance metrics studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logistic models are studied as a tool to convert dynamical forecast information (deterministic and ensemble) into probability forecasts. A logistic model is obtained by setting the logarithmic odds ratio equal to a linear combination of the inputs. As with any statistical model, logistic models will suffer from overfitting if the number of inputs is comparable to the number of forecast instances. Computational approaches to avoid overfitting by regularization are discussed, and efficient techniques for model assessment and selection are presented. A logit version of the lasso (originally a linear regression technique), is discussed. In lasso models, less important inputs are identified and the corresponding coefficient is set to zero, providing an efficient and automatic model reduction procedure. For the same reason, lasso models are particularly appealing for diagnostic purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to understand the physical processes causing the large spread in the storm track projections of the CMIP5 climate models. In particular, the relationship between the climate change responses of the storm tracks, as measured by the 2–6 day mean sea level pressure variance, and the equator-to-pole temperature differences at upper- and lower-tropospheric levels is investigated. In the southern hemisphere the responses of the upper- and lower-tropospheric temperature differences are correlated across the models and as a result they share similar associations with the storm track responses. There are large regions in which the storm track responses are correlated with the temperature difference responses, and a simple linear regression model based on the temperature differences at either level captures the spatial pattern of the mean storm track response as well explaining between 30 and 60 % of the inter-model variance of the storm track responses. In the northern hemisphere the responses of the two temperature differences are not significantly correlated and their associations with the storm track responses are more complicated. In summer, the responses of the lower-tropospheric temperature differences dominate the inter-model spread of the storm track responses. In winter, the responses of the upper- and lower-temperature differences both play a role. The results suggest that there is potential to reduce the spread in storm track responses by constraining the relative magnitudes of the warming in the tropical and polar regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5-10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970-1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061 +/- 0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models' inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Habitat-based statistical models relating patterns of presence and absence of species to habitat variables could be useful to resolve conservation-related problems and highlight the causes of population declines. In this paper, we apply such a modelling approach to an endemic amphibian, the Sardinian mountain newt Euproctus platycephalus, considered by IUCN a critically endangered species. Sardinian newts inhabit freshwater habitat in streams, small lakes and pools on the island of Sardinia (Italy). Reported declines of newt populations are not yet supported by quantitative data, however, they are perceived or suspected across the species' historical range. This study represents a first attempt trying to statistically relate habitat characteristics to Sardinian newt occurrence and persistence. Linear regression analysis revealed that newts are more likely to be found in sites with colder water temperature, less riparian vegetation and, marginally, absence of fish. The implications of the results for the conservation of the species are discussed, and suggestions for the short-term management of newt inhabited sites suggested. (C) 2003 Elsevier Ltd. All rights reserved.