79 resultados para LEAF POWDER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disease-weather relationships influencing Septoria leaf blotch (SLB) preceding growth stage (GS) 31 were identified using data from 12 sites in the UK covering 8 years. Based on these relationships, an early-warning predictive model for SLB on winter wheat was formulated to predict the occurrence of a damaging epidemic (defined as disease severity of 5% or > 5% on the top three leaf layers). The final model was based on accumulated rain > 3 mm in the 80-day period preceding GS 31 (roughly from early-February to the end of April) and accumulated minimum temperature with a 0A degrees C base in the 50-day period starting from 120 days preceding GS 31 (approximately January and February). The model was validated on an independent data set on which the prediction accuracy was influenced by cultivar resistance. Over all observations, the model had a true positive proportion of 0.61, a true negative proportion of 0.73, a sensitivity of 0.83, and a specificity of 0.18. True negative proportion increased to 0.85 for resistant cultivars and decreased to 0.50 for susceptible cultivars. Potential fungicide savings are most likely to be made with resistant cultivars, but such benefits would need to be identified with an in-depth evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flavonoid survey was carried out on 45 taxa from the genera Shorea, Hopea, Parashorea, Neobalanocarpus, and Dryobalanops of the tribe Shoreae in the Dipterocarpaceae. The study showed significant chemotaxonomic differences in leaf flavonoid aglycone patterns and the presence of tannins in these taxa. The flavonoid patterns are useful in the delimitation of some taxa. For example, the genus Parashorea is distinguished by the universal presence of kaempferol 3-methyl ether, and the monotypic genus Neobalanocarpus is unique in not producing ellagic and gallo tannins. The presence of chalcones and flavone C-glycosides supports the separation of the genus Hopea into two sections, section Dryobalanoides and section Hopea in Ashton's classification, which is based on the type of venation. The flavonoid distributions in this study show that they can be very useful for differentiating between the Balau group in the genus Shorea, and some scaly barked Hopea species, particularly H. helferi (lintah bukit), H. nutans (giam), and H. ferrea (malut). (C) 2008 The Linnean Society of London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An outdoor experiment was conducted to increase understanding of apical leaf necrosis in the presence of pathogen infection. Holcus lanatus seeds and Puccinia coronata spores were collected from two adjacent and otherwise similar habitats with differing long-term N fertilization levels. After inoculation, disease and necrosis dynamics were observed during the plant growing seasons of 2003 and 2006. In both years high nutrient availability resulted in earlier disease onset, a higher pathogen population growth rate, earlier physiological apical leaf necrosis onset and a reduced time between disease onset and apical leaf necrosis onset. Necrosis rate was shown to be independent of nutrient availability. The results showed that in these nutrient-rich habitats H. lanatus plants adopted necrosis mechanisms which wasted more nutrients. There was some indication that these necrosis mechanisms were subject to local selection pressures, but these results were not conclusive. The findings of this study are consistent with apical leaf necrosis being an evolved defence mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf blotch, caused by Rhynchosporium secalis, was studied in a range of winter barley cultivars using a combination of traditional plant pathological techniques and newly developed multiplex and real-time polymerase chain reaction (PCR) assays. Using PCR, symptomless leaf blotch colonization was shown to occur throughout the growing season in the resistant winter barley cv. Leonie. The dynamics of colonization throughout the growing season were similar in both Leonie and Vertige, a susceptible cultivar. However, pathogen DNA levels were approximately 10-fold higher in the susceptible cultivar, which expressed symptoms throughout the growing season. Visual assessments and PCR also were used to determine levels of R. secalis colonization and infection in samples from a field experiment used to test a range of winter barley cultivars with different levels of leaf blotch resistance. The correlation between the PCR and visual assessment data was better at higher infection levels (R(2) = 0.81 for leaf samples with >0.3% disease). Although resistance ratings did not correlate well with levels of disease for all cultivars tested, low levels of infection were observed in the cultivar with the highest resistance rating and high levels of infection in the cultivar with the lowest resistance rating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apical leaf necrosis is a physiological process related to nitrogen (N) dynamics in the leaf. Pathogens use leaf nutrients and can thus accelerate this physiological apical necrosis. This process differs from necrosis occurring around pathogen lesions (lesion-induced necrosis), which is a direct result of the interaction between pathogen hyphae and leaf cells. This paper primarily concentrates on apical necrosis, only incorporating lesion-induced necrosis by necessity. The relationship between pathogen dynamics and physiological apical leaf necrosis is modelled through leaf nitrogen dynamics. The specific case of Puccinia triticina infections on Triticum aestivum flag leaves is studied. In the model, conversion of indirectly available N in the form of, for example, leaf cell proteins (N-2(t)) into directly available N (N-1(t), i.e. the form of N that can directly be used by either pathogen or plant sinks) results in apical necrosis. The model reproduces observed trends of disease severity, apical necrosis and green leaf area (GLA) and leaf N dynamics of uninfected and infected leaves. Decreasing the initial amount of directly available N results in earlier necrosis onset and longer necrosis duration. Decreasing the initial amount of indirectly available N, has no effect on necrosis onset and shortens necrosis duration. The model could be used to develop hypotheses on how the disease-GLA relation affects yield loss, which can be tested experimentally. Upon incorporation into crop simulation models, the model might provide a tool to more accurately estimate crop yield and effects of disease management strategies in crops sensitive to fungal pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A size-structured plant population model is developed to study the evolution of pathogen-induced leaf shedding under various environmental conditions. The evolutionary stable strategy (ESS) of the leaf shedding rate is determined for two scenarios: i) a constant leaf shedding strategy and ii) an infection load driven leaf shedding strategy. The model predicts that ESS leaf shedding rates increase with nutrient availability. No effect of plant density on the ESS leaf shedding rate is found even though disease severity increases with plant density. When auto-infection, that is increased infection due to spores produced on the plant itself, plays a key role in further disease increase on the plant, shedding leaves removes disease that would otherwise contribute to disease increase on the plant itself. Consequently leaf shedding responses to infections may evolve. When external infection, that is infection due to immigrant spores, is the key determinant, shedding a leaf does not reduce the force of infection on the leaf shedding plant. In this case leaf shedding will not evolve. Under a low external disease pressure adopting an infection driven leaf shedding strategy is more efficient than adopting a constant leaf shedding strategy, since a plant adopting an infection driven leaf shedding strategy does not shed any leaves in the absence of infection, even when leaf shedding rates are high. A plant adopting a constant leaf shedding rate sheds the same amount of leaves regardless of the presence of infection. Based on the results we develop two hypotheses that can be tested if the appropriate plant material is available.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WO3-based materials as sensors for the monitor of environmental gases such as NO2 (NO + NO2) have been rapidly developed for various potential applications (stationary and mobile uses). It has been reported that these materials are highly sensitive to NOx with the sensitivity further enhanced by adding precious group metals (PGM such as Pt, Pd, Au, etc.). However, there has been limited work in revealing the sensing mechanism for these gases over the WO3-based sensors. In particular, the role of promoter is not yet clear though speculations on their catalytic, electronic and structural effects have been made in the past. In parallel to these PGM promoters here we report,for the first time, that Ag promotion can also enhance WO3 sensitivity significantly. In addition, this promotion decreases the optimum sensor temperature of 300 degreesC for Most WO3-based sensors, to below 200 degreesC. Characterizations (XRD, TEM, and impedance measurement) reveal that there is no significant bulk structure change nor particle size alteration in the WO3 phases during the NO exposure. However, it is found that the Ag doping creates a high concentration of oxygen vacancies in form of coordinated crystallographic shear (CS) planes onto the underneath WO3. It is thus proposed that the Ag particle facilitates the oxidative conversion of NO to NO2 followed by a subsequent NO2 adsorption on the defective WO, sites created at the Ag-WO3 interface; hence, accounting for the high molecular sensitivity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of X-ray powder data for the melt-crystallisable aromatic poly(thioether thioether ketone) [-S-Ar-S-Ar-CO-Ar](n), ('PTTK', Ar= 1,4-phenylene), reveals that it adopts a crystal structure very different from that established for its ether-analogue PEEK. Molecular modelling and diffraction-simulation studies of PTTK show that the structure of this polymer is analogous to that of melt-crystallised poly(thioetherketone) [-SAr-CO-Ar](n) in which the carbonyl linkages in symmetry-related chains are aligned anti-parallel to one another. and that these bridging units are crystallographically interchangeable. The final model for the crystal structure of PTTK is thus disordered, in the monoclinic space group 121a (two chains per unit cell), with cell dimensions a = 7.83, b = 6.06, c = 10.35 angstrom, beta = 93.47 degrees. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper summarizes the design, manufacturing, testing, and finite element analysis (FEA) of glass-fibre-reinforced polyester leaf springs for rail freight vehicles. FEA predictions of load-deflection curves under static loading are presented, together with comparisons with test results. Bending stress distribution at typical load conditions is plotted for the springs. The springs have been mounted on a real wagon and drop tests at tare and full load have been carried out on a purpose-built shaker rig. The transient response of the springs from tests and FEA is presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design evolution process of a composite leaf spring for freight rail applications. Three designs of eye-end attachment for composite leaf springs are described. The material used is glass fibre reinforced polyester. Static testing and finite element analysis have been carried out to obtain the characteristics of the spring. Load-deflection curves and strain measurement as a function of load for the three designs tested have been plotted for comparison with FEA predicted values. The main concern associated with the first design is the delamination failure at the interface of the fibres that have passed around the eye and the spring body, even though the design can withstand 150 kN static proof load and one million cycles fatigue load. FEA results confirmed that there is a high interlaminar shear stress concentration in that region. The second design feature is an additional transverse bandage around the region prone to delamination. Delamination was contained but not completely prevented. The third design overcomes the problem by ending the fibres at the end of the eye section.