20 resultados para LATE PLEISTOCENE
Resumo:
Quaternary climatic fluctuations have had profound effects on the phylogeographic structure of many species. Classically, species were thought to have become isolated in peninsular refugia, but there is limited evidence that large, non-polar species survived outside traditional refugial areas. We examined the phylogeographic structure of the red fox (Vulpes vulpes), a species that shows high ecological adaptability in the western Palaearctic region. We compared mitochondrial DNA sequences (cytochrome b and control region) from 399 modern and 31 ancient individuals from across Europe. Our objective was to test whether red foxes colonised the British Isles from mainland Europe in the late Pleistocene, or whether there is evidence that they persisted in the region through the Last Glacial Maximum. We found red foxes to show a high degree of phylogeographic structuring across Europe and, consistent with palaeontological and ancient DNA evidence, confirmed via phylogenetic indicators that red foxes were persistent in areas outside peninsular refugia during the last ice age. Bayesian analyses and tests of neutrality indicated population expansion. We conclude that there is evidence that red foxes from the British Isles derived from central European populations that became isolated after the closure of the landbridge with Europe.
Resumo:
Quantitative estimates of temperature and precipitation change during the late Pleistocene and Holocene have been difficult to obtain for much of the lowland Neotropics. Using two published lacustrine pollen records and a climate-vegetation model based on the modern abundance distributions of 154 Neotropical plant families, we demonstrate how family-level counts of fossil pollen can be used to quantitatively reconstruct tropical paleoclimate and provide needed information on historic patterns of climatic change. With this family-level analysis, we show that one area of the lowland tropics, northeastern Bolivia, experienced cooling (1–3 °C) and drying (400 mm/yr), relative to present, during the late Pleistocene (50,000–12,000 calendar years before present [cal. yr B.P.]). Immediately prior to the Last Glacial Maximum (LGM, ca. 21,000 cal. yr B.P.), we observe a distinct transition from cooler temperatures and variable precipitation to a period of warmer temperatures and relative dryness that extends to the middle Holocene (5000–3000 cal. yr B.P.). This prolonged reduction in precipitation occurs against the backdrop of increasing atmospheric CO2 concentrations, indicating that the presence of mixed savanna and dry-forest communities in northeastern Bolivia durng the LGM was not solely the result of low CO2 levels, as suggested previously, but also lower precipitation. The results of our analysis demonstrate the potential for using the distribution and abundance structure of modern Neotropical plant families to infer paleoclimate from the fossil pollen record.
Resumo:
During each of the late Pleistocene glacial–interglacial transitions, atmospheric carbon dioxide concentrations rose by almost 100 ppm. The sources of this carbon are unclear, and efforts to identify them are hampered by uncertainties in the magnitude of carbon reservoirs and fluxes under glacial conditions. Here we use oxygen isotope measurements from air trapped in ice cores and ocean carbon-cycle modelling to estimate terrestrial and oceanic gross primary productivity during the Last Glacial Maximum. We find that the rate of gross terrestrial primary production during the Last Glacial Maximum was about 40±10 Pg C yr−1, half that of the pre-industrial Holocene. Despite the low levels of photosynthesis, we estimate that the late glacial terrestrial biosphere contained only 330 Pg less carbon than pre-industrial levels. We infer that the area covered by carbon-rich but unproductive biomes such as tundra and cold steppes was significantly larger during the Last Glacial Maximum, consistent with palaeoecological data. Our data also indicate the presence of an inert carbon pool of 2,300 Pg C, about 700 Pg larger than the inert carbon locked in permafrost today. We suggest that the disappearance of this carbon pool at the end of the Last Glacial Maximum may have contributed to the deglacial rise in atmospheric carbon dioxide concentrations.
Resumo:
The Antarctic Peninsula region is currently undergoing rapid environmental change, resulting in the thinning, acceleration and recession of glaciers and the sequential collapse of ice shelves. It is important to view these changes in the context of long-term palaeoenvironmental complexity and to understand the key processes controlling ice sheet growth and recession. In addition, numerical ice sheet models require detailed geological data for tuning and testing. Therefore, this paper systematically and holistically reviews published geological evidence for Antarctic Peninsula Ice Sheet variability for each key locality throughout the Cenozoic, and brings together the prevailing consensus of the extent, character and behaviour of the glaciations of the Antarctic Peninsula region. Major contributions include a downloadable database of 186 terrestrial and marine calibrated dates; an original reconstruction of the LGM ice sheet; and a new series of isochrones detailing ice sheet retreat following the LGM. Glaciation of Antarctica was initiated around the Eocene/Oligocene transition in East Antarctica. Palaeogene records of Antarctic Peninsula glaciation are primarily restricted to King George Island, where glacigenic sediments provide a record of early East Antarctic glaciations, but with modification of far-travelled erratics by local South Shetland Island ice caps. Evidence for Neogene glaciation is derived primarily from King George Island and James Ross Island, where glaciovolcanic strata indicate that ice thicknesses reached 500–850 m during glacials. This suggests that the Antarctic Peninsula Ice Sheet draped, rather than drowned, the topography. Marine geophysical investigations indicate multiple ice sheet advances during this time. Seismic profiling of continental shelf-slope deposits indicates up to ten large advances of the Antarctic Peninsula Ice Sheet during the Early Pleistocene, when the ice sheet was dominated by 40 kyr cycles. Glacials became more pronounced, reaching the continental shelf edge, and of longer duration during the Middle Pleistocene. During the Late Pleistocene, repeated glacials reached the shelf edge, but ice shelves inhibited iceberg rafting. The Last Glacial Maximum (LGM) occurred at 18 ka BP, after which transitional glaciomarine sediments on the continental shelf indicate ice-sheet retreat. The continental shelf contains large bathymetric troughs, which were repeatedly occupied by large ice streams during Pleistocene glaciations. Retreat after the LGM was episodic in the Weddell Sea, with multiple readvances and changes in ice-flow direction, but rapid in the Bellingshausen Sea. The late Holocene Epoch was characterised by repeated fluctuations in palaeoenvironmental conditions, with associated glacial readvances. However, this has been subsumed by rapid warming and ice-shelf collapse during the twentieth century.
Resumo:
This paper presents results on archaeological research conducted at the Cisnes river basin (~44° S), valley which passes through several environments in western Patagonia, from the westernmost limits of the steppe to the Pacific channels. These are assessed in light of a palaeoenvironmental reconstruction spanning from the Late Pleistocene to the Holocene. Results allow interpreting different ways for approaching the environment; these are exposed both spatially and chronologically. Cultural units defined occupied the space discontinuously and ranking it differentially attending to environmental variability. We correlate our data with available archaeological information for Aisén and adjacent areas. Additionally, we discuss cultural continuity and eventual interaction of steppe hunter-gatherers with peoples from the western archipelagic area.