19 resultados para LASER-INDUCED BREAKDOWN SPECTROSCOPY
Resumo:
Intracavity photoacoustic overtone spectrum of monofluoroacetylene, HCCF, has been recorded in the wave number region 10 750–14 500 cm−1 with a titanium:sapphire ring laser. The spectrum contains many dense vibration–rotation band systems which can be resolved with Doppler limited resolution. Altogether 58 individual overtone bands have been analyzed rotationally. Many of the observed bands show perturbations of which some have been attributed to anharmonic resonance interactions. A Fermi resonance model based on conventional rectilinear normal coordinate theory has been used to assign vibrationally bands from this work and from earlier studies. Many of the observed vibrational term values and rotational constants can be reproduced well with this model. The results show the importance of the Fermi resonance interactions at the high overtone excitations.
Resumo:
It is demonstrated that distortion of the terahertz beam profile and generation of a cross-polarised component occur when the beam in terahertz time domain spectroscopy and imaging systems interacts with the sample under test. These distortions modify the detected signal, leading to spectral and image artefacts. The degree of distortion depends on the optical design of the system as well as the properties of the sample.
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.