22 resultados para Knowledge Networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent, dramatic spatial development trends have contributed to the consolidation of a unique territorial governance landscape in the Baltic States. The paper examines the transformation of this evolving institutional landscape for planning practice and knowledge, which has been marked by the disintegration of Soviet institutions and networks, the transition to a market-based economy and the process of accession to the EU. It explores the evolution of territorial knowledge channels in the Baltic States, and the extent and nature of the engagement of actors' communities with the main knowledge arenas and resources of European spatial planning (ESP). The paper concludes that recent shifts in the evolution of these channels suggest the engagement of ESP has concentrated among epistemic communities at State and trans-national levels of territorial governance. The limited policy coordination across a broader spectrum of diverse actors is compounded by institutionally weak and fragmented professional communities of practice, fragmented government structures and marginalized advocacy coalitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UK construction industry labour market is characterised by high levels of self-employment, sub-contracting, informality and flexibility. A corollary of this, and a sign of the increasing globalisation of construction, has been an increasing reliance on migrant labour, particularly that from the Eastern European Accession states. Yet, little is known about how their experiences within and outside of work shape their work in the construction sector. In this context better qualitative understandings of the social and communication networks through which migrant workers gain employment, create routes through the sector and develop their role/career are needed. We draw on two examples from a short-term ethnographic study of migrant construction worker employment experiences and practices in the town of Crewe in Cheshire, UK, to demonstrate how informal networks intersect with formal elements of the sector to facilitate both recruitment and up-skilling. Such research knowledge, we argue, offers new evidence of the importance of attending to migrant worker’s own experiences in the development of more transparent recruitment processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are looking into variants of a domination set problem in social networks. While randomised algorithms for solving the minimum weighted domination set problem and the minimum alpha and alpha-rate domination problem on simple graphs are already present in the literature, we propose here a randomised algorithm for the minimum weighted alpha-rate domination set problem which is, to the best of our knowledge, the first such algorithm. A theoretical approximation bound based on a simple randomised rounding technique is given. The algorithm is implemented in Python and applied to a UK Twitter mentions networks using a measure of individuals’ influence (klout) as weights. We argue that the weights of vertices could be interpreted as the costs of getting those individuals on board for a campaign or a behaviour change intervention. The minimum weighted alpha-rate dominating set problem can therefore be seen as finding a set that minimises the total cost and each individual in a network has at least alpha percentage of its neighbours in the chosen set. We also test our algorithm on generated graphs with several thousand vertices and edges. Our results on this real-life Twitter networks and generated graphs show that the implementation is reasonably efficient and thus can be used for real-life applications when creating social network based interventions, designing social media campaigns and potentially improving users’ social media experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an application of Social Network Analysis methods for identification of knowledge demands in public organisations. Affiliation networks established in a postgraduate programme were analysed. The course was executed in a distance education mode and its students worked on public agencies. Relations established among course participants were mediated through a virtual learning environment using Moodle. Data available in Moodle may be extracted using knowledge discovery in databases techniques. Potential degrees of closeness existing among different organisations and among researched subjects were assessed. This suggests how organisations could cooperate for knowledge management and also how to identify their common interests. The study points out that closeness among organisations and research topics may be assessed through affiliation networks. This opens up opportunities for applying knowledge management between organisations and creating communities of practice. Concepts of knowledge management and social network analysis provide the theoretical and methodological basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks – homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter presents selected literature examples to review the development of the use of donor–acceptor π–π stacking interactions as transient cross-links in supramolecular polymer networks. The chapter examines notable examples of these highly specific and directional interactions and illustrates how they can be utilised to reliably produce functional supramolecular, self-assembled systems. Knowledge gained from these fundamental studies has enabled the design, synthesis and application of donor–acceptor stacked supramolecular motifs in non-covalent polymer networks, which is exemplified through detailing the production, physical properties and optimisation of healable materials.