21 resultados para Knock-in mouse


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate the role of the SEF14 fimbrial antigen in pathogenesis, a single defined sefA (SEF14(-)) inactivated mutant of Salmonella enteritidis strain LA5 was constructed and tested in a number of biological assay systems. There was no significant difference between the wild-type strain and the isogenic SEF14(-) mutant in their abilities to adhere to and invade HEp-2 epithelial cells or their survival in mouse peritoneal macrophages, whereas the SEF14(-) mutant was ingested more rapidly by isolated human PMN. Both the strains colonized the intestine, invaded and spread systemically in 1 day-old chicks, laying hens and BALB/c mice equally well. A significantly greater number of chicks excreted the wildtype SEF14(+) strain during the first week following infection as compared to those infected with the SEF14(-) mutant. However, similar numbers of chicks excreted the two strains between 2 and 7 weeks after infection. These results indicate that possession of SEF14 fimbriae alone do not appear to play a significant role in the pathogenesis of S. enteritidis although its contribution to virulence may be dependent on the host species infected. (C) 1996 Academic Press Limited

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxidative stress promotes cardiac myocyte apoptosis through the mitochondrial death pathway. Since Bcl-2 family proteins are key regulators of apoptosis, we examined the effects of H2O2 on the expression of principal Bcl-2 family proteins (Bcl-2, Bcl-xL, Bax, Bad) in neonatal rat cardiac myocytes. Protein expression was assessed by immunoblotting. Bcl-2, Bax, and Bad were all down-regulated in myocytes exposed to 0.2 mm H2O2, a concentration that induces apoptosis. In contrast, although Bcl-xL levels initially declined, the protein was re-expressed from 4-6 h. Bcl-xL mRNA was up-regulated from 2 to 4 h in neonatal rat or mouse cardiac myocytes exposed to H2O2, consistent with the re-expression of protein. Four different untranslated first exons have been identified for the Bcl-x gene (exons 1, 1B, 1C, and 1D, where exon 1 is the most proximal and exon 1D the most distal to the coding region). All were detected in mouse or rat neonatal cardiac myocytes, but exon 1D was not expressed in adult mouse hearts. In neonatal mouse or rat cardiac myocytes, H2O2 induced the expression of exons 1B, 1C, and 1D, but not exon 1. These data demonstrate that the Bcl-x gene is selectively responsive to oxidative stress, and the response is mediated through distal promoter regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The L-glutamate transporter GLT-1 is an abundant CNS membrane protein of the excitatory amino acid transporter (EAAT) family which controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using RT-PCR, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N- and C-termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected HEK-293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (V5, HA or FLAG) into the second extracellular domain of each isoform allowed co-immunoprecipitation and tr-FRET studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms are able to combine to form homomeric and heteromeric assemblies, each of which are expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mammalian tachykinins are a family of peptides that, until recently, has included substance P (SP), neurokinin A and neurokinin B. Since, the discovery of a third preprotachykinin gene (TAC4), the number of tachykinins has more than doubled to reveal several species-divergent peptides. This group includes hemokinin-1 (HK-1) in mouse and rat, endokinin-1 (EK-1) in rabbit, and EKA, EKB, human HK-1 (hHK-1) and hHK(4-11) in humans. Each exhibits a remarkable selectivity and potency for the tachykinin NK1 receptor similar to SP. Their peripheral expression has led to the proposal that they are the endogenous peripheral SP-like endocrine/paracrine agonists where SP is not expressed. Moreover, their strong cross-reactivity with a specific SP antibody leads us to question many of the proposed locations and roles of SP in the periphery. Additionally, three orphan tachykinin gene-related peptides are identified on TAC4, in rabbit, EK-2 and in humans, EKC and EKD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In mouse and chick embryos, cyclic expression of lunatic fringe has an important role in the regulation of mesoderm segmentation. We have isolated a Fringe gene from the protochordate amphioxus. Amphioxus is the closest living relative of the vertebrates, and has mesoderm that is definitively segmented in a manner that is similar to, and probably homologous with, that of vertebrates. AmphiFringe is placed basal to vertebrate Fringe genes in molecular phylogenetic analyses, indicating that the duplications that formed radical-, manic- and lunatic fringe are specific to the vertebrate lineage. AmphiFringe expression was detected in the anterior neural plate of early neurulae, where it resolved into a series of segmental patches by the mid-neurulae stage. No AmphiFringe transcripts were detected in the mesoderm. Based on these observations, we propose a model depicting a successive recruitment of Fringe in the maintenance then regulation of segmentation during vertebrate evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(1) Stimulation of the vanilloid receptor-1 (TRPV1) results in the activation of nociceptive and neurogenic inflammatory responses. Poor specificity and potency of TRPV1 antagonists has, however, limited the clarification of the physiological role of TRPV1. (2) Recently, iodo-resiniferatoxin (I-RTX) has been reported to bind as a high affinity antagonist at the native and heterologously expressed rat TRPV1. Here we have studied the ability of I-RTX to block a series of TRPV1 mediated nociceptive and neurogenic inflammatory responses in different species (including transfected human TRPV1). (3) We have demonstrated that I-RTX inhibited capsaicin-induced mobilization of intracellular Ca(2+) in rat trigeminal neurons (IC(50) 0.87 nM) and in HEK293 cells transfected with the human TRPV1 (IC(50) 0.071 nM). (4) Furthermore, I-RTX significantly inhibited both capsaicin-induced CGRP release from slices of rat dorsal spinal cord (IC(50) 0.27 nM) and contraction of isolated guinea-pig and rat urinary bladder (pK(B) of 10.68 and 9.63, respectively), whilst I-RTX failed to alter the response to high KCl or SP. (5) Finally, in vivo I-RTX significantly inhibited acetic acid-induced writhing in mice (ED(50) 0.42 micro mol kg(-1)) and plasma extravasation in mouse urinary bladder (ED(50) 0.41 micro mol kg(-1)). (6) In in vitro and in vivo TRPV1 activated responses I-RTX was approximately 3 log units and approximately 20 times more potent than capsazepine, respectively. This high affinity antagonist, I-RTX, may be an important tool for future studies in pain and neurogenic inflammatory models.