69 resultados para Jet physics
Resumo:
Much of the atmospheric variability in the North Atlantic sector is associated with variations in the eddy-driven component of the zonal flow. Here we present a simple method to specifically diagnose this component of the flow using the low-level wind field (925–700 hpa ). We focus on the North Atlantic winter season in the ERA-40 reanalysis. Diagnostics of the latitude and speed of the eddy-driven jet stream are compared with conventional diagnostics of the North Atlantic Oscillation (NAO) and the East Atlantic (EA) pattern. This shows that the NAO and the EA both describe combined changes in the latitude and speed of the jet stream. It is therefore necessary, but not always sufficient, to consider both the NAO and the EA in identifying changes in the jet stream. The jet stream analysis suggests that there are three preferred latitudinal positions of the North Atlantic eddy-driven jet stream in winter. This result is in very good agreement with the application of a statistical mixture model to the two-dimensional state space defined by the NAO and the EA. These results are consistent with several other studies which identify four European/Atlantic regimes, comprising three jet stream patterns plus European blocking events.
Resumo:
A new system for the generation of hydrodynamic modulated voltammetry (HMV) is presented. This system consists of an oscillating jet produced through the mechanical vibration of a large diaphragm. The structure of the cell is such that a relatively small vibration is transferred to a large fluid flow at the jet outlet. Positioning of an electrode (Pt, 0.5 mm or 25 mu m diameter) over the exit of this jet enables the detection of the modulated flow of liquid. While this flow creates modest mass transfer rates (time averaged similar to 0.015 cm s(-1)) it can also be used to create a HMV system where a 'lock-in' approach is adopted to investigate the redox chemistry in question. This is demonstrated for the Fe(CN)(6)(3-/4-) redox system. Here 'lock-in' to the modulated hydrodynamic signal is achieved through the deployment of bespoke software. The apparatus and procedure is shown to produce a simple and efficient way to obtain the desired signal. In addition the spatial variation of the HMV signal, phase correction and time averaged current with respect to the jet orifice is presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrochemistry of nanostructured electrodes is investigated using hydrodynamic modulated voltammetry (HMV). Here a liquid crystal templating process is used to produce a platinum modified electrode with a relatively high surface area (Roughness factor, Rf = 42.4). The electroreduction of molecular oxygen at a nanostructured platinum surface is used to demonstrate the ability of HMV to discriminate between Faradaic and non-Faradaic electrode reactions. The HMV approach shows that the reduction of molecular oxygen shows considerable hysteresis correlating with the formation and stripping of oxide species at the platinum surface. Without the HMV analysis it is difficult to discern the same detail under the conditions employed. In addition the detection limit of the apparatus is explored and shown, under ideal conditions, to be of the order of 45 nmol dm(-3) employing [Fe(CN)(6)](4-) as a test species. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study was an attempt to identify the epistemological roots of knowledge when students carry out hands-on experiments in physics. We found that, within the context of designing a solution to a stated problem, subjects constructed and ran thought experiments intertwined within the processes of conducting physical experiments. We show that the process of alternating between these two modes- empirically experimenting and experimenting in thought- leads towards a convergence on scientifically acceptable concepts. We call this process mutual projection. In the process of mutual projection, external representations were generated. Objects in the physical environment were represented in an imaginary world and these representations were associated with processes in the physical world. It is through this coupling that constituents of both the imaginary world and the physical world gain meaning. We further show that the external representations are rooted in sensory interaction and constitute a semi-symbolic pictorial communication system, a sort of primitive 'language', which is developed as the practical work continues. The constituents of this pictorial communication system are used in the thought experiments taking place in association with the empirical experimentation. The results of this study provide a model of physics learning during hands-on experimentation.
Resumo:
Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modem polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25-60 degrees C. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60 degrees C), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50 degrees C) and had lower strain hardening. Strain hardening measured at 50 degrees C gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25oC to 60oC. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60oC), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45oC to 50oC) and had lower strain hardening. Strain hardening measured at 50oC gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality.
Resumo:
Predictive controllers are often only applicable for open-loop stable systems. In this paper two such controllers are designed to operate on open-loop critically stable systems, each of which is used to find the control inputs for the roll control autopilot of a jet fighter aircraft. It is shown how it is quite possible for good predictive control to be achieved on open-loop critically stable systems.
Resumo:
Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.
Resumo:
Urban boundary layers (UBLs) can be highly complex due to the heterogeneous roughness and heating of the surface, particularly at night. Due to a general lack of observations, it is not clear whether canonical models of boundary layer mixing are appropriate in modelling air quality in urban areas. This paper reports Doppler lidar observations of turbulence profiles in the centre of London, UK, as part of the second REPARTEE campaign in autumn 2007. Lidar-measured standard deviation of vertical velocity averaged over 30 min intervals generally compared well with in situ sonic anemometer measurements at 190 m on the BT telecommunications Tower. During calm, nocturnal periods, the lidar underestimated turbulent mixing due mainly to limited sampling rate. Mixing height derived from the turbulence, and aerosol layer height from the backscatter profiles, showed similar diurnal cycles ranging from c. 300 to 800 m, increasing to c. 200 to 850 m under clear skies. The aerosol layer height was sometimes significantly different to the mixing height, particularly at night under clear skies. For convective and neutral cases, the scaled turbulence profiles resembled canonical results; this was less clear for the stable case. Lidar observations clearly showed enhanced mixing beneath stratocumulus clouds reaching down on occasion to approximately half daytime boundary layer depth. On one occasion the nocturnal turbulent structure was consistent with a nocturnal jet, suggesting a stable layer. Given the general agreement between observations and canonical turbulence profiles, mixing timescales were calculated for passive scalars released at street level to reach the BT Tower using existing models of turbulent mixing. It was estimated to take c. 10 min to diffuse up to 190 m, rising to between 20 and 50 min at night, depending on stability. Determination of mixing timescales is important when comparing to physico-chemical processes acting on pollutant species measured simultaneously at both the ground and at the BT Tower during the campaign. From the 3 week autumnal data-set there is evidence for occasional stable layers in central London, effectively decoupling surface emissions from air aloft.
Resumo:
Comparing changes in temperature and solar radiation on centennial timescales can help to constrain the Sun’s impact on climate. New findings regarding the minimum activity level of the Sun reveal that comparisons made so far may have been too simplistic.
Resumo:
The consistency of ensemble forecasts from three global medium-range prediction systems with the observed transition behaviour of a three-cluster model of the North Atlantic eddy-driven jet is examined. The three clusters consist of a mid jet cluster taken to represent an undisturbed jet and south and north jet clusters representing southward and northward shifts of the jet. The ensemble forecasts span a period of three extended winters (October–February) from October 2007–February 2010. The mean probabilities of transitions between the clusters calculated from the ensemble forecasts are compared with those calculated from a 23-extended-winter climatology taken from the European Centre for Medium-Range Weather Forecasts 40-Year Re-analysis (ERA40) dataset. No evidence of a drift with increasing lead time of the ensemble forecast transition probabilities towards values inconsistent with the 23-extended-winter climatology is found. The ensemble forecasts of transition probabilities are found to have positive Brier Skill at 15 day lead times. It is found that for the three-extended-winter forecast set, probabilistic forecasts initialized in the north jet cluster are generally less skilful than those initialized in the other clusters. This is consistent with the shorter persistence time-scale of the north jet cluster observed in the ERA40 23-extended-winter climatology. Copyright © 2011 Royal Meteorological Society
Resumo:
Sting jets are transient mesoscale jets of air that descend from the tip of the cloud head towards the top of the boundary layer in severe extratropical cyclones and can lead to damaging surface wind gusts. This recently identified jet is distinct from the well-documented jets associated with the cold and warm conveyor belts. One mechanism proposed for their development is the release of conditional symmetric instability (CSI). Here the spatial distribution and temporal evolution of several CSI diagnostics in four severe storms are analysed. A sting jet has been identified in three of these storms; for comparison, we also analysed one storm that did not have a sting jet, even though it hadmany of the apparent features of sting-jet storms. The sting-jet storms are distinct from the non-sting-jet storms by having much greater andmore extensive conditional instability (CI) and CSI. CSI is released by ascending air parcels in the cloud head in two of the sting-jet storms and by descending air parcels in the other sting-jet storm. By contrast, only weak CI to ascending air parcels is present at the cloud-head tip in the non-sting-jet storm. CSI released by descending air parcels, as diagnosed by decaying downdraught slantwise convective available potential energy (DSCAPE), is collocated with the sting jets in all three sting-jet storms and has a localisedmaximum in two of them. Consistent evolutions of saturated moist potential vorticity are found.We conclude that CSI release has a role in the generation of the sting jet, that the sting jet may be driven by the release of instability to both ascending and descending parcels, and that DSCAPE could be used as a discriminating diagnostic for the sting jet based on these four case-studies.
Resumo:
In this study, 40-yr ECMWF Re-Analysis (ERA-40) data are used for the description of the seasonal cycle and the interannual variability of the westerly jet in the Tibetan Plateau region. To complement results based on the analysis of monthly mean horizontal wind speeds, an occurrence-based jet climatology is constructed by identifying the locations of the jet axes at 6-hourly intervals throughout 1958–2001. Thus, a dataset describing the highly transient and localized features of jet variability is obtained. During winter and summer the westerly jet is located, respectively, to the south and north of the Tibetan Plateau. During the spring and autumn seasons there are jet transitions from south to north and vice versa. The median dates for these transitions are 28 April and 12 October. The spring transition is associated with large interannual variations, while the fall transition occurs more reliably within a 3-week period. The strength of the jet exhibits a peculiar seasonal cycle. During northward migration in April/May, the jet intensity weakens and its latitudinal position varies largely. In some springs, there are several transitions and split configurations occur before the jet settles in its northern summer position. In June, a well-defined and unusually strong jet reappears at the northern flanks of the Tibetan Plateau. In autumn, the jet gradually but reliably recedes to the south and is typically more intense than in spring. The jet transitions between the two preferred locations follow the seasonal latitudinal migration of the jet in the Northern Hemisphere. An analysis of interannual variations shows the statistical relationship between the strength of the summer jet, the tropospheric meridional temperature gradient, and the all-India rainfall series. Both this analysis and results from previous studies point to the particular dynamical relevance of the onsetting Indian summer monsoon precipitation and the associated diabatic heating for the formation of the strong summer jet. Finally, an example is provided that illustrates the climatological significance of the jet in terms of the covariation between the jet location and the spatial precipitation distribution in central Asia.