84 resultados para Jackson, John


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North Atlantic Marine Boundary Layer Experiment (NAMBLEX), involving over 50 scientists from 12 institutions, took place at Mace Head, Ireland (53.32° N, 9.90° W), between 23 July and 4 September 2002. A wide range of state-of-the-art instrumentation enabled detailed measurements of the boundary layer structure and atmospheric composition in the gas and aerosol phase to be made, providing one of the most comprehensive in situ studies of the marine boundary layer to date. This overview paper describes the aims of the NAMBLEX project in the context of previous field campaigns in the Marine Boundary Layer (MBL), the overall layout of the site, a summary of the instrumentation deployed, the temporal coverage of the measurement data, and the numerical models used to interpret the field data. Measurements of some trace species were made for the first time during the campaign, which was characterised by predominantly clean air of marine origin, but more polluted air with higher levels of NOx originating from continental regions was also experienced. This paper provides a summary of the meteorological measurements and Planetary Boundary Layer (PBL) structure measurements, presents time series of some of the longer-lived trace species (O3, CO, H2, DMS, CH4, NMHC, NOx, NOy, PAN) and summarises measurements of other species that are described in more detail in other papers within this special issue, namely oxygenated VOCs, HCHO, peroxides, organo-halogenated species, a range of shorter lived halogen species (I2, OIO, IO, BrO), NO3 radicals, photolysis frequencies, the free radicals OH, HO2 and (HO2+Σ RO2), as well as a summary of the aerosol measurements. NAMBLEX was supported by measurements made in the vicinity of Mace Head using the NERC Dornier-228 aircraft. Using ECMWF wind-fields, calculations were made of the air-mass trajectories arriving at Mace Head during NAMBLEX, and were analysed together with both meteorological and trace-gas measurements. In this paper a chemical climatology for the duration of the campaign is presented to interpret the distribution of air-mass origins and emission sources, and to provide a convenient framework of air-mass classification that is used by other papers in this issue for the interpretation of observed variability in levels of trace gases and aerosols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is emerging evidence to show that high levels of NEFA contribute to endothelial dysfunction and impaired insulin sensitivity. However, the impact of NEFA composition remains unclear. A total of ten healthy men consumed test drinks containing 50 g of palm stearin (rich in SFA) or high-oleic sunflower oil (rich in MUFA) on separate occasions; a third day included no fat as a control. The fats were emulsified into chocolate drinks and given as a bolus (approximately 10 g fat) at baseline followed by smaller amounts (approximately 3 g fat) every 30 min throughout the 6 h study day. An intravenous heparin infusion was initiated 2 h after the bolus, which resulted in a three- to fourfold increase in circulating NEFA level from baseline. Mean arterial stiffness as measured by digital volume pulse was higher during the consumption of SFA (P,0·001) but not MUFA (P¼0·089) compared with the control. Overall insulin and gastric inhibitory peptide response was greater during the consumption of both fats compared with the control (P,0·001); there was a second insulin peak in response to MUFA unlike SFA. Consumption of SFA resulted in higher levels of soluble intercellular adhesion molecule-1 (sI-CAM) at 330 min than that of MUFA or control (P#0·048). There was no effect of the test drinks on glucose, total nitrite, plasminogen activator inhibitor-1 or endothelin-1 concentrations. The present study indicates a potential negative impact of elevated NEFA derived from the consumption of SFA on arterial stiffness and sI-CAM levels. More studies are needed to fully investigate the impact of NEFA composition on risk factors for CVD.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The co-evolution of bacterial plant pathogens and their hosts is a complex and dynamic process. Plant resistance can impose stress on invading pathogens that can lead to, and select for, beneficial changes in the bacterial genome. The Pseudomonas syringae pv. phaseolicola (Pph) genomic island PPHGI-1 carries an effector gene, avrPphB (hopAR1), which triggers the hypersensitive reaction in bean plants carrying the R3 resistance gene. Interaction between avrPphB and R3 generates an antimicrobial environment within the plant, resulting in the excision of PPHGI-1 and its loss from the genome. The loss of PPHGI-1 leads to the generation of a Pph strain able to cause disease in the plant. In this study, we observed that lower bacterial densities inoculated into resistant bean (Phaseolus vulgaris) plants resulted in quicker PPHGI-1 loss from the population, and that loss of the island was strongly influenced by the type of plant resistance encountered by the bacteria. In addition, we found that a number of changes occurred in the bacterial genome during growth in the plant, whether or not PPHGI-1 was lost. We also present evidence that the circular PPHGI-1 episome is able to replicate autonomously when excised from the genome. These results shed more light onto the plasticity of the bacterial genome as it is influenced by in planta conditions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: