51 resultados para Italian novels of the 20th century
Resumo:
By applying methods of cognitive metaphor theory, Jaworska examines metaphorical scenarios employed in the discourse of anti-Slavism, which featured prominently in radical nationalist propaganda in Germany at the turn of the twentieth century. She does so by analysing metaphorical expressions used to refer to the Polish population living in the eastern provinces of Prussia, in the so-called Ostmark. Her article is based on an analysis of a range of pamphlets and newspaper articles written by some of the leading figures of two nationalist organizations: the Pan-German League (Alldeutscher Verband) and the Eastern Marches Society(Ostmarkenverein). The main research questions it addresses are: What kind of metaphoric scenarios were used to depict the Polish minority, and to what extent were the metaphorical patterns of anti-Slavic imagery similar to those employed in the antisemitic propaganda of the Nazi era? Is there a discursive continuity between the radical nationalism of imperial Germany and the National Socialism of the Third Reich at the level of metaphorical scenarios? Ultimately, Jaworska attempts to contribute to a better understanding of the cognitive mechanisms underlying radical and essentially racist attitudes.
Resumo:
Causing civilian casualties during military operations has become a much politicised topic in international relations since the Second World War. Since the last decade of the 20th century, different scholars and political analysts have claimed that human life is valued more and more among the general international community. This argument has led many researchers to assume that democratic culture and traditions, modern ethical and moral issues have created a desire for a world without war or, at least, a demand that contemporary armed conflicts, if unavoidable, at least have to be far less lethal forcing the military to seek new technologies that can minimise civilian casualties and collateral damage. Non-Lethal Weapons (NLW) – weapons that are intended to minimise civilian casualties and collateral damage – are based on the technology that, during the 1990s, was expected to revolutionise the conduct of warfare making it significantly less deadly. The rapid rise of interest in NLW, ignited by the American military twenty five years ago, sparked off an entirely new military, as well as an academic, discourse concerning their potential contribution to military success on the 21st century battlefields. It seems, however, that except for this debate, very little has been done within the military forces themselves. This research suggests that the roots of this situation are much deeper than the simple professional misconduct of the military establishment, or the poor political behaviour of political leaders, who had sent them to fight. Following the story of NLW in the U.S., Russia and Israel this research focuses on the political and cultural aspects that have been supposed to force the military organisations of these countries to adopt new technologies and operational and organisational concepts regarding NLW in an attempt to minimise enemy civilian casualties during their military operations. This research finds that while American, Russian and Israeli national characters are, undoubtedly, products of the unique historical experience of each one of these nations, all of three pay very little regard to foreigners’ lives. Moreover, while it is generally argued that the international political pressure is a crucial factor that leads to the significant reduction of harmed civilians and destroyed civilian infrastructure, the findings of this research suggest that the American, Russian and Israeli governments are well prepared and politically equipped to fend off international criticism. As the analyses of the American, Russian and Israeli cases reveal, the political-military leaderships of these countries have very little external or domestic reasons to minimise enemy civilian casualties through fundamental-revolutionary change in their conduct of war. In other words, this research finds that employment of NLW have failed because the political leadership asks the militaries to reduce the enemy civilian casualties to a politically acceptable level, rather than to the technologically possible minimum; as in the socio-cultural-political context of each country, support for the former appears to be significantly higher than for the latter.
Resumo:
We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed VSW, the interplanetary magnetic field strength B, and the open solar flux FS. Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using VSW, FS, or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.
Resumo:
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
Resumo:
A large number of processes are involved in the pathogenesis of atherosclerosis but it is unclear which of them play a rate-limiting role. One way of resolving this problem is to investigate the highly non-uniform distribution of disease within the arterial system; critical steps in lesion development should be revealed by identifying arterial properties that differ between susceptible and protected sites. Although the localisation of atherosclerotic lesions has been investigated intensively over much of the 20th century, this review argues that the factor determining the distribution of human disease has only recently been identified. Recognition that the distribution changes with age has, for the first time, allowed it to be explained by variation in transport properties of the arterial wall; hitherto, this view could only be applied to experimental atherosclerosis in animals. The newly discovered transport variations which appear to play a critical role in the development of adult disease have underlying mechanisms that differ from those elucidated for the transport variations relevant to experimental atherosclerosis: they depend on endogenous NO synthesis and on blood flow. Manipulation of transport properties might have therapeutic potential. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
Recent research has suggested that relatively cold UK winters are more common when solar activity is low (Lockwood et al 2010 Environ. Res. Lett. 5 024001). Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century (Lockwood 2010 Proc. R. Soc. A 466 303–29) and records of past solar variations inferred from cosmogenic isotopes (Abreu et al 2008 Geophys. Res. Lett. 35 L20109) and geomagnetic activity data (Lockwood et al 2009 Astrophys. J. 700 937–44) suggest that the current grand solar maximum is coming to an end and hence that solar activity can be expected to continue to decline. Combining cosmogenic isotope data with the long record of temperatures measured in central England, we estimate how solar change could influence the probability in the future of further UK winters that are cold, relative to the hemispheric mean temperature, if all other factors remain constant. Global warming is taken into account only through the detrending using mean hemispheric temperatures. We show that some predictive skill may be obtained by including the solar effect.
Resumo:
During the 20th century, solar activity increased in magnitude to a so-called grand maximum. It is probable that this high level of solar activity is at or near its end. It is of great interest whether any future reduction in solar activity could have a significant impact on climate that could partially offset the projected anthropogenic warming. Observations and reconstructions of solar activity over the last 9000 years are used as a constraint on possible future variations to produce probability distributions of total solar irradiance over the next 100 years. Using this information, with a simple climate model, we present results of the potential implications for future projections of climate on decadal to multidecadal timescales. Using one of the most recent reconstructions of historic total solar irradiance, the likely reduction in the warming by 2100 is found to be between 0.06 and 0.1 K, a very small fraction of the projected anthropogenic warming. However, if past total solar irradiance variations are larger and climate models substantially underestimate the response to solar variations, then there is a potential for a reduction in solar activity to mitigate a small proportion of the future warming, a scenario we cannot totally rule out. While the Sun is not expected to provide substantial delays in the time to reach critical temperature thresholds, any small delays it might provide are likely to be greater for lower anthropogenic emissions scenarios than for higher-emissions scenarios.
Resumo:
James Cooksey Culwick (1845-1907) was born in England. Trained as chorister and organist in Lichfield Cathedral, he moved to Ireland at twenty- one and remained until his death in 1907. Although his reputation as scholar, musician and teacher was acknowledged widely during his lifetime - he received an honorary doctorate from University of Dublin (1893) - little is known about the contribution he made to music education. This paper addresses this gap in the literature and argues that it was Culwick's singular achievement to pay attention to music pedagogy at secondary level, by recognizing that music could be seen as a serious career option for girls, and by providing resources for teachers which emphasised the development of an 'art-feeling' in pupils of all abilities. In addition, he considered Irish music as an art which had significance as music first, and Irish music second, and advocated a 'laudable tolerance' for opposing views on matters of cultural identity to Ireland at the end of the nineteenth century.
Resumo:
A high-resolution GCM is found to simulate precipitation and surface energy balance of high latitudes with high accuracy. This opens new possibilities to investigate the future mass balance of polar glaciers and its effect on sea level. The surface mass balance of the Greenland and the Antarctic ice sheets is simulated using the ECHAM3 GCM with TI06 horizontal resolution. With this model, two 5-year integrations for the present and doubled carbon dioxide conditions based on the boundary conditions provided by the ECHAM1/T21 transient experiment have been conducted. A comparison of the two experiments over Greenland and Antarctica shows to what extent the effect of climate change on the mass balance on the two largest glaciers of the world can differ. On Greenland one sees a slight decrease in accumulation and a substantial increase in melt, while on Antarctica a large increase in accumulation without melt is projected. Translating the mass balances into terms of sea-level equivalent. the Greenland discharge causes a sea level rise of 1.1 mm yr−1, while the accumulation on Antarctica tends to lower it by 0.9 mm yr−1. The change in the combined mass balance of the two continents is almost zero. The sea level change of the next century can be affected more effectively by the thermal expansion of seawater and the mass balance of smaller glaciers outside of Greenland and Antarctica.
Resumo:
Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lower stratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Cly near 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease to 1980 values and before the Antarctic. None of the CCMs predict future large decreases in the Arctic column ozone. By 2100, total column ozone is projected to be substantially above 1980 values in all regions except in the tropics.
Resumo:
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry‐climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.
Resumo:
The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the literature that during the 20th century the Walker circulation weakened, and that this weakening was attributable to anthropogenic climate change. By using updated observations, we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s. Associated with this enhancement is enhanced precipitation in the tropical western Pacific, anomalous westerlies in the upper troposphere, descent in the central and eastern tropical Pacific, and anomalous surface easterlies in the western and central tropical Pacific. The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific. Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign. We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic. An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa, implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation. Whether these recent changes will be sustained is not yet clear, but our research highlights the importance of understanding the interdecadal variability, as well as the long-term trends, that influence tropical circulation.
Resumo:
Mass loss by glaciers has been an important contributor to sea level rise in the past, and is projected to contribute a substantial fraction of total sea level rise during the 21st century. Here, we use a model of the world's glaciers to quantify equilibrium sensitivities of global glacier mass to climate change, and to investigate the role of changes in glacier hypsometry for long-term mass changes. We find that 21st century glacier-mass loss is largely governed by the glacier's response to 20th century climate change. This limits the influence of 21st century climate change on glacier-mass loss, and explains why there are relatively small differences in glacier-mass loss under greatly different scenarios of climate change. The projected future changes in both temperature and precipitation experienced by glaciers are amplified relative to the global average. The projected increase in precipitation partly compensates for the mass loss caused by warming, but this compensation is negligible at higher temperature anomalies since an increasing fraction of precipitation at the glacier sites is liquid. Loss of low-lying glacier area, and more importantly, eventual complete disappearance of glaciers, strongly limit the projected sea level contribution from glaciers in coming centuries. The adjustment of glacier hypsometry to changes in the forcing strongly reduces the rates of global glacier-mass loss caused by changes in global mean temperature compared to rates of mass loss when hypsometric changes are neglected. This result is a second reason for the relatively weak dependence of glacier-mass loss on future climate scenario, and helps explain why glacier-mass loss in the first half of the 20th century was of the same order of magnitude as in the second half of the 20th century, even though the rate of warming was considerably smaller.
Resumo:
Results from all phases of the orbits of the Ulysses spacecraft have shown that the magnitude of the radial component of the heliospheric field is approximately independent of heliographic latitude. This result allows the use of near- Earth observations to compute the total open flux of the Sun. For example, using satellite observations of the interplanetary magnetic field, the average open solar flux was shown to have risen by 29% between 1963 and 1987 and using the aa geomagnetic index it was found to have doubled during the 20th century. It is therefore important to assess fully the accuracy of the result and to check that it applies to all phases of the solar cycle. The first perihelion pass of the Ulysses spacecraft was close to sunspot minimum, and recent data from the second perihelion pass show that the result also holds at solar maximum. The high level of correlation between the open flux derived from the various methods strongly supports the Ulysses discovery that the radial field component is independent of latitude. We show here that the errors introduced into open solar flux estimates by assuming that the heliospheric field’s radial component is independent of latitude are similar for the two passes and are of order 25% for daily values, falling to 5% for averaging timescales of 27 days or greater. We compare here the results of four methods for estimating the open solar flux with results from the first and second perehelion passes by Ulysses. We find that the errors are lowest (1–5% for averages over the entire perehelion passes lasting near 320 days), for near-Earth methods, based on either interplanetary magnetic field observations or the aa geomagnetic activity index. The corresponding errors for the Solanki et al. (2000) model are of the order of 9–15% and for the PFSS method, based on solar magnetograms, are of the order of 13–47%. The model of Solanki et al. is based on the continuity equation of open flux, and uses the sunspot number to quantify the rate of open flux emergence. It predicts that the average open solar flux has been decreasing since 1987, as Correspondence to: M. Lockwood (m.lockwood@rl.ac.uk) is observed in the variation of all the estimates of the open flux. This decline combines with the solar cycle variation to produce an open flux during the second (sunspot maximum) perihelion pass of Ulysses which is only slightly larger than that during the first (sunspot minimum) perihelion pass.
Resumo:
The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to pesticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered (GE) insect resistant crops could mitigate many of the negative side effects of pesticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro-ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if non-susceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers’ disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible longterm ecological trophic interactions of employing this technology.