80 resultados para Irrigation schemes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper [P. Glaister, Conservative upwind difference schemes for compressible flows in a Duct, Comput. Math. Appl. 56 (2008) 1787–1796] numerical schemes based on a conservative linearisation are presented for the Euler equations governing compressible flows of an ideal gas in a duct of variable cross-section, and in [P. Glaister, Conservative upwind difference schemes for compressible flows of a real gas, Comput. Math. Appl. 48 (2004) 469–480] schemes based on this philosophy are presented for real gas flows with slab symmetry. In this paper we seek to extend these ideas to encompass compressible flows of real gases in a duct. This will incorporate the handling of additional terms arising out of the variable geometry and the non-ideal nature of the gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of irrigation and nitrogen (N) fertilizer on Hagberg falling number (HFN), specific weight (SW) and blackpoint (BP) of winter wheat (Triticum aestivum L) were investigated. Mains water (+50 and +100 mm month(-1), containing 44 mg NO3- litre(-1) and 28 mg SO42- litre(-1)) was applied with trickle irrigation during winter (17 January-17 March), spring (21 March-20 May) or summer (24 May-23 July). In 1999/2000 these treatments were factorially combined with three N levels (0, 200, 400 kg N ha(-1)), applied to cv Hereward. In 2000/01 the 400 kg N ha(-1) treatment was replaced with cv Malacca given 200 kg N ha(-1). Irrigation increased grain yield, mostly by increasing grain numbers when applied in winter and spring, and by increasing mean grain weight when applied in summer. Nitrogen increased grain numbers and SW, and reduced BP in both years. Nitrogen increased HFN in 1999/2000 and reduced HFN in 2000/01. Effects of irrigation on HFN, SW and BP were smaller and inconsistent over year and nitrogen level. Irrigation interacted with N on mean grain weight: negatively for winter and spring irrigation, and positively for summer irrigation. Ten variables derived from digital image analysis of harvested grain were included with mean grain weight in a principal components analysis. The first principal component ('size') was negatively related to HFN (in two years) and BP (one year), and positively related to SW (two years). Treatment effects on dimensions of harvested grain could not explain all of the effects on HFN, BP and SW but the results were consistent with the hypothesis that water and nutrient availability, even when they were affected early in the season, could influence final grain quality if they influenced grain numbers and size. (C) 2004 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A primary objective of agri-environment schemes is the conservation of biodiversity; in addition to increasing the value of farmland for wildlife, these schemes also aim to restore natural ecosystem functioning. The management of scheme options can influence their value for delivering ecosystem services by modifying the composition of floral and faunal communities. This study examines the impact of an agri-environment scheme prescription on ecosystem functioning by testing the hypothesis that vegetation management influences decomposition rates in grassy arable field margins. The effects of two vegetation management practices in arable field margins - cutting and soil disturbance (scarification) - on litter decomposition were compared using a litterbag experimental approach in early April 2006. Bags had either small mesh designed to restrict access to soil macrofauna, or large mesh that would allow macrofauna to enter. Bags were positioned on the soil surface or inserted into the soil in cut and scarified margins, retrieved after 44, 103 and 250 days and the amount of litter mass remaining was calculated. Litter loss from the litterbags with large mesh was greater than from the small mesh bags, providing evidence that soil macrofauna accelerate rates of litter decomposition. In the large mesh bags, the proportion of litter remaining in bags above and belowground in the cut plots was similar, while in the scarified plots, there was significantly more litter left in the aboveground bags than in the belowground bags. This loss of balance between decomposition rates above and belowground in scarified margins may have implications for the development and maintenance of grassy arable field margins by influencing nutrient availability for plant communities. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulated irrigation has the potential to improve crop quality in woody ornamentals by reducing excessive vigour and promoting a more compact habit. This research aimed to compare the effectiveness and the mode of action of two techniques, regulated deficit irrigation (RDI) and partial root drying (PRD), when applied to container-grown ornamentals through drip irrigation. Results showed that RDI and PRD reduced growth in Cotinus coggygria 'Royal Purple', but in Forsythia x intermedia 'Lynwood', significant reductions were recorded only with RDI. Physiological measurements in Forsythia indicated that reductions in stomatal conductance (g(s)) occurred in both treatments, but those in the RDI tended to be more persistent. Reduced g(s) in PRD was consistent with the concept that chemical signals from the root can regulate stomatal aperture alone; however, the data also suggested that optimising the growth reduction required a moderate degree of shoot water deficit (i.e. a hydraulic signal to be imposed). As RDI was associated with tissue water deficit, it was used in a second experiment to determine the potential of this technique to precondition container-grown plants against subsequent drought stress (e.g. during retail stages or after planting out). Speed of acclimation would be important in a commercial context, and the results demonstrated that both slow and rapid imposition of RDI enabled Forsythia plants to acclimate against later drought events. This article discusses the potential to both improve ornamental plant quality and enhance tolerance to subsequent adverse conditions through controlled, regulated irrigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improving plant quality and the uniformity of a crop are major objectives for growers of ornamental nursery stock. The potential to control excess vigour and to improve quality through regulated deficit irrigation (RDI) was investigated using a range of woody ornamental species. RDI regimes reduced vegetative growth consistently across different species and growing seasons. Plants adapted to reduced water supplies primarily via stomatal control, but also by osmotic adjustment when grown under the most severe RDI regimes. Only plants exposed to <= 25% of potential evapo-transpiration demonstrated any evidence of leaf injury, and the extent was slight. Growth inhibition increased as the severity of RDI increased. Improvements in quality were attained through a combination of shorter internodes and final shoot lengths, yet the number of 'formative' primary shoots remained unaffected. Compact, well-branched plants could be formed without a requirement for mid-season pruning. In addition to severity, the timing of RDI also influenced growth responses. Applying 50% ETp for 8 weeks during July-August resulted in the formation of good quality plants, which retained their shape until the following Spring. Re-positioning irrigation drippers within the pots of well-watered plants, in an attempt to induce a partial root drying (PRD) treatment, reduced growth, but not significantly. The adoption of irrigation scheduling, based on 50-100% ETp, has the potential to improve commercial crop quality across a range of ornamental species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research was to determine whether shoot growth could be regulated and plant quality improved through two controlled irrigation techniques: Regulated Deficit Irrigation (RDI) or Partial Root Drying (PRD). An additional benefit of such techniques is that they would also improve the efficiency of irrigation application and reduce the volume of water used on commercial nurseries. Results from two ornamental woody plant species (Cotinus and Forsythia) demonstrated that plant quality could be significantly improved when RDI was applied at ≤ 60% of potential evapo-transpiration (ETp). Stomatal closure and reduced leaf and internode growth rates were associated with both the RDI and PRD techniques, but reduced leaf water potential was only recorded in the RDI system. Changes in xylem sap pH and ABA concentrations were correlated with changes in shoot physiology, and thought to be generated by those roots exposed to drying soil. By adopting such controlled irrigation systems on commercial holdings it is estimated that water consumption could be reduced by 50 to 90%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A means of assessing, monitoring and controlling aggregate emissions from multi-instrument Emissions Trading Schemes is proposed. The approach allows contributions from different instruments with different forms of emissions targets to be integrated. Where Emissions Trading Schemes are helping meet specific national targets, the approach allows the entry requirements of new participants to be calculated and set at a level that will achieve these targets. The approach is multi-levelled, and may be extended downwards to support pooling of participants within instruments, or upwards to embed Emissions Trading Schemes within a wider suite of policies and measures with hard and soft targets. Aggregate emissions from each instrument are treated stochastically. Emissions from the scheme as a whole are then the joint probability distribution formed by integrating the emissions from its instruments. Because a Bayesian approach is adopted, qualitative and semi-qualitative data from expert opinion can be used where quantitative data is not currently available, or is incomplete. This approach helps government retain sufficient control over emissions trading scheme targets to allow them to meet their emissions reduction obligations, while minimising the need for retrospectively adjusting existing participants’ conditions of entry. This maintains participant confidence, while providing the necessary policy levers for good governance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taipei City has put a significant effort toward the implementation of green design and green building schemes towards a sustainable eco-city. Although some of the environmental indicators have not indicated significant progress in environmental improvement, implementing the two schemes has obtained considerable results; therefore, the two schemes are on the right path towards promoting a sustainable eco-city. However, it has to be admitted that the two schemes are a rather “technocratic” set of solutions and eco-centric approach. It is suggested that not only the public sector but also the private sector need to put more effort toward implement the schemes, and the government needs to encourage the private sector to adopt the schemes in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In models of complicated physical-chemical processes operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The recently rediscovered weighted splitting schemes have the great advantage of being parallelizable on operator level, which allows us to reduce the computational time if parallel computers are used. In this paper, the computational times needed for the weighted splitting methods are studied in comparison with the sequential (S) splitting and the Marchuk-Strang (MSt) splitting and are illustrated by numerical experiments performed by use of simplified versions of the Danish Eulerian model (DEM).