153 resultados para Ion release
Resumo:
Sediments play a fundamental role in the behaviour of contaminants in aquatic systems. Various processes in sediments, eg adsorption-desorption, oxidation-reduction, ion exchange or biological activities, can cause accumulation or release of metals and anions from the bottom of reservoirs, and have been recently studied in Polish waters [1-3]. Sediment samples from layer A: (1 divided by 6 cm depth in direct contact with bottom water); layer B: (7 divided by 12 cm depth moderate contact); and layer C: (12+ cm depth, in theory an inactive layer) were collected in September 2007 from six sites representing different types of hydrological conditions along the Dobczyce Reservoir (Fig. l). Water depths at the sampling points varied from 3.5 to 21 m. We have focused on studying the distribution and accumulation of several heavy metals (Cr, Pb, Cd, Cu and Zn) in the sediments. The surface, bottom and pore water (extracted from sediments by centrifugation) samples were also collected. Possible relationships between the heavy-metal distribution in sediments and the sediment characteristics (mineralogy, organic matter) as well as the Fe, Mn and Ca content of sediments, have been studied. The 02 concentrations in water samples were also measured. The heavy metals in sediments ranged from 19.0 to 226.3 mg/kg of dry mass (ppm). The results show considerable variations in heavy-metal concentrations between the 6 stations, but not in the individual layers (A, B, C). These variations are related to the mineralogy and chemical composition of the sediments and their pore waters.
Resumo:
Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.
Resumo:
Excessive levels of P in agricultural soils pose a threat to local water quality. This study evaluated (i) time-dependent changes in soil P sorption (expressed as a phosphorus sorption index, PSI) and P availability (as resin P) during incubation (100 d) with poultry litter, cattle slurry, sewage sludge, or KH2PO4, added on a P-equivalent basis (100 mg P kg(-1)), and (ii) the subsequent kinetics of P release, measured by repeated extractions with a mixed cation-anion exchange resin. Soil exchangeable Ca and ammonium oxalate-extractable Fe and Al were also determined at 100 d of incubation. The small decrease in P sorption in the litter and sludge treatments (25%), compared with that in the slurry and KH2PO4 treatments (52%) between 20 and 100 d of incubation was attributed partly to the formation of new adsorption sites for P. Subsequent P release was described by a power equation: Resin P = a(extraction number)(b), where the constants a and b represent resin P obtained with a single extraction and the rate of P release per resin extraction, respectively. On average, the rate of P release decreased in the order: KH2PO4 and slurry > litter > sludge, and was inversely related to exchangeable Ca content of the incubated soils (R-2 = 0.57). The slower rates of P release in the litter and sludge treatments (P < 0.001) are attributed to the large values for exchangeable Ca (1050-2640 and 1070-2710 mg kg(-1), respectively) in these amended soils. Future research concerned with short-term declines in environmentally harmful levels of P in recently amended soils should consider the differential effects of the amendments on soil P dynamics.
Resumo:
Fine-grained sediments on land, or in a freshwater or marine environment, may become contaminated with a wide range of pollutants including hydrocarbons. This paper is concerned with preliminary studies of the mobilization and transportation of hydrocarbons, during the process of consolidation, to adjacent sediments or water bodies. A modified Rowe Cell was used to measure the consolidation properties of prepared kaolinite and bentonite clay-water slurries, with and without the addition of oil, along with hydrocarbon-bearing drill-cuttings samples taken from the sea-bed adjacent to two North Sea oil-well platforms. The consolidation properties of the kaolinite and bentonite clay slurries were little altered by the addition of oil, which was present at concentrations of between 8073 and 59 572 mg kg(-1). During each consolidation stage, samples of the expelled pore-fluids were collected and analysed for oil content. These values were very low in comparison with the original oil concentration in the samples and changed little between each consolidation stage. Analysis of the slurry samples both before and after consolidation confirms that, proportionally, little oil is removed as a result of consolidation. The implication of these results is that, for the range of samples tested, the very high hydraulic gradients and particle rearrangements that occur during the process of consolidation are capable of releasing only proportionally small amounts of oil bound to the fine-grained clay and silt particles.
Resumo:
Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.