29 resultados para International Classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Distributed Rule Induction (DRI) project at the University of Portsmouth is concerned with distributed data mining algorithms for automatically generating rules of all kinds. In this paper we present a system architecture and its implementation for inducing modular classification rules in parallel in a local area network using a distributed blackboard system. We present initial results of a prototype implementation based on the Prism algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Top Down Induction of Decision Trees (TDIDT) is the most commonly used method of constructing a model from a dataset in the form of classification rules to classify previously unseen data. Alternative algorithms have been developed such as the Prism algorithm. Prism constructs modular rules which produce qualitatively better rules than rules induced by TDIDT. However, along with the increasing size of databases, many existing rule learning algorithms have proved to be computational expensive on large datasets. To tackle the problem of scalability, parallel classification rule induction algorithms have been introduced. As TDIDT is the most popular classifier, even though there are strongly competitive alternative algorithms, most parallel approaches to inducing classification rules are based on TDIDT. In this paper we describe work on a distributed classifier that induces classification rules in a parallel manner based on Prism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally classifiers tend to overfit if there is noise in the training data or there are missing values. Ensemble learning methods are often used to improve a classifier's classification accuracy. Most ensemble learning approaches aim to improve the classification accuracy of decision trees. However, alternative classifiers to decision trees exist. The recently developed Random Prism ensemble learner for classification aims to improve an alternative classification rule induction approach, the Prism family of algorithms, which addresses some of the limitations of decision trees. However, Random Prism suffers like any ensemble learner from a high computational overhead due to replication of the data and the induction of multiple base classifiers. Hence even modest sized datasets may impose a computational challenge to ensemble learners such as Random Prism. Parallelism is often used to scale up algorithms to deal with large datasets. This paper investigates parallelisation for Random Prism, implements a prototype and evaluates it empirically using a Hadoop computing cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airborne lidar provides accurate height information of objects on the earth and has been recognized as a reliable and accurate surveying tool in many applications. In particular, lidar data offer vital and significant features for urban land-cover classification, which is an important task in urban land-use studies. In this article, we present an effective approach in which lidar data fused with its co-registered images (i.e. aerial colour images containing red, green and blue (RGB) bands and near-infrared (NIR) images) and other derived features are used effectively for accurate urban land-cover classification. The proposed approach begins with an initial classification performed by the Dempster–Shafer theory of evidence with a specifically designed basic probability assignment function. It outputs two results, i.e. the initial classification and pseudo-training samples, which are selected automatically according to the combined probability masses. Second, a support vector machine (SVM)-based probability estimator is adopted to compute the class conditional probability (CCP) for each pixel from the pseudo-training samples. Finally, a Markov random field (MRF) model is established to combine spatial contextual information into the classification. In this stage, the initial classification result and the CCP are exploited. An efficient belief propagation (EBP) algorithm is developed to search for the global minimum-energy solution for the maximum a posteriori (MAP)-MRF framework in which three techniques are developed to speed up the standard belief propagation (BP) algorithm. Lidar and its co-registered data acquired by Toposys Falcon II are used in performance tests. The experimental results prove that fusing the height data and optical images is particularly suited for urban land-cover classification. There is no training sample needed in the proposed approach, and the computational cost is relatively low. An average classification accuracy of 93.63% is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article considers the threaties and customs governing armed conflict in the context of the long standing insurgency in southeast Turkey. The first part of the article analyzes the existing treaty and customary law concerning the threshold of an armed conflict and concludes that the insurgency in Southeast Turkey existing since 1984 rises to the level of an armed conflict based on criteria identified both in treaty and customary international law. The next consideration is the classification of this conflict and this part concludes that this situation is a non-international armed conflict due to lack of involvement of forces of another country. Finally, this article considers international humanitarian law applicable to this non-international armed conflict and reveals that as a result of the monumental International Committee of the Red Cross customary humanitarian law study, particularly with respect to the law of targeting, that the rules applicable to international and non-international armed conflict have never been closer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In The Conduct of Inquiry in International Relations, Patrick Jackson situates methodologies in International Relations in relation to their underlying philosophical assumptions. One of his aims is to map International Relations debates in a way that ‘capture[s] current controversies’ (p. 40). This ambition is overstated: whilst Jackson’s typology is useful as a clarificatory tool, (re)classifying existing scholarship in International Relations is more problematic. One problem with Jackson’s approach is that he tends to run together the philosophical assumptions which decisively differentiate his methodologies (by stipulating a distinctive warrant for knowledge claims) and the explanatory strategies that are employed to generate such knowledge claims, suggesting that the latter are entailed by the former. In fact, the explanatory strategies which Jackson associates with each methodology reflect conventional practice in International Relations just as much as they reflect philosophical assumptions. This makes it more difficult to identify each methodology at work than Jackson implies. I illustrate this point through a critical analysis of Jackson’s controversial reclassification of Waltz as an analyticist, showing that whilst Jackson’s typology helps to expose inconsistencies in Waltz’s approach, it does not fully support the proposed reclassification. The conventional aspect of methodologies in International Relations also raises questions about the limits of Jackson’s ‘engaged pluralism’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various complex oscillatory processes are involved in the generation of the motor command. The temporal dynamics of these processes were studied for movement detection from single trial electroencephalogram (EEG). Autocorrelation analysis was performed on the EEG signals to find robust markers of movement detection. The evolution of the autocorrelation function was characterised via the relaxation time of the autocorrelation by exponential curve fitting. It was observed that the decay constant of the exponential curve increased during movement, indicating that the autocorrelation function decays slowly during motor execution. Significant differences were observed between movement and no moment tasks. Additionally, a linear discriminant analysis (LDA) classifier was used to identify movement trials with a peak accuracy of 74%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information was collated on the seed storage behaviour of 67 tree species native to the Amazon rainforest of Brazil; 38 appeared to show orthodox, 23 recalcitrant and six intermediate seed storage behaviour. A double-criteria key based on thousand-seed weight and seed moisture content at shedding to estimate likely seed storage behaviour, developed previously, showed good agreement with the above classifications. The key can aid seed storage behaviour identification considerably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in hardware and software technologies allow to capture streaming data. The area of Data Stream Mining (DSM) is concerned with the analysis of these vast amounts of data as it is generated in real-time. Data stream classification is one of the most important DSM techniques allowing to classify previously unseen data instances. Different to traditional classifiers for static data, data stream classifiers need to adapt to concept changes (concept drift) in the stream in real-time in order to reflect the most recent concept in the data as accurately as possible. A recent addition to the data stream classifier toolbox is eRules which induces and updates a set of expressive rules that can easily be interpreted by humans. However, like most rule-based data stream classifiers, eRules exhibits a poor computational performance when confronted with continuous attributes. In this work, we propose an approach to deal with continuous data effectively and accurately in rule-based classifiers by using the Gaussian distribution as heuristic for building rule terms on continuous attributes. We show on the example of eRules that incorporating our method for continuous attributes indeed speeds up the real-time rule induction process while maintaining a similar level of accuracy compared with the original eRules classifier. We termed this new version of eRules with our approach G-eRules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in hardware technologies allow to capture and process data in real-time and the resulting high throughput data streams require novel data mining approaches. The research area of Data Stream Mining (DSM) is developing data mining algorithms that allow us to analyse these continuous streams of data in real-time. The creation and real-time adaption of classification models from data streams is one of the most challenging DSM tasks. Current classifiers for streaming data address this problem by using incremental learning algorithms. However, even so these algorithms are fast, they are challenged by high velocity data streams, where data instances are incoming at a fast rate. This is problematic if the applications desire that there is no or only a very little delay between changes in the patterns of the stream and absorption of these patterns by the classifier. Problems of scalability to Big Data of traditional data mining algorithms for static (non streaming) datasets have been addressed through the development of parallel classifiers. However, there is very little work on the parallelisation of data stream classification techniques. In this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time adaptive and parallel methodology for scalable data stream classification tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three coupled knowledge transfer partnerships used pattern recognition techniques to produce an e-procurement system which, the National Audit Office reports, could save the National Health Service £500 m per annum. An extension to the system, GreenInsight, allows the environmental impact of procurements to be assessed and savings made. Both systems require suitable products to be discovered and equivalent products recognised, for which classification is a key component. This paper describes the innovative work done for product classification, feature selection and reducing the impact of mislabelled data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.