20 resultados para Inhibitory
Resumo:
Sensory afferent signals from neck muscles have been postulated to influence central cardiorespiratory control as components of postural reflexes, but neuronal pathways for this action have not been identified. The intermedius nucleus of the medulla (InM) is a target of neck muscle spindle afferents and is ideally located to influence such reflexes but is poorly investigated. To aid identification of the nucleus, we initially produced three-dimensional reconstructions of the InM in both mouse and rat. Neurochemical analysis including transgenic reporter mice expressing green fluorescent protein in GABA-synthesizing neurons, immunohistochemistry, and in situ hybridization revealed that the InM is neurochemically diverse, containing GABAegric and glutamatergic neurons with some degree of colocalization with parvalbumin, neuronal nitric oxide synthase, and calretinin. Projections from the InM to the nucleus tractus solitarius (NTS) were studied electrophysiologically in rat brainstem slices. Electrical stimulation of the NTS resulted in antidromically activated action potentials within InM neurons. In addition, electrical stimulation of the InM resulted in EPSPs that were mediated by excitatory amino acids and IPSPs mediated solely by GABA(A) receptors or by GABA(A) and glycine receptors. Chemical stimulation of the InM resulted in (1) a depolarization of NTS neurons that were blocked by NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonoamide) or kynurenic acid and (2) a hyperpolarization of NTS neurons that were blocked by bicuculline. Thus, the InM contains neurochemically diverse neurons and sends both excitatory and inhibitory projections to the NTS. These data provide a novel pathway that may underlie possible reflex changes in autonomic variables after neck muscle spindle afferent activation.
Resumo:
Potent angiotensin I-converting enzyme (ACE) inhibitory peptide mixtures were obtained from the hydrolysis of β-lactoglobulin (βLg) using Protease N Amano, a food-grade commercial proteolytic preparation. Hydrolysis experiments were carried out for 8 h at two different temperatures and neutral pH. Based on their ACE inhibitory activity, samples of 6 h of digestion were chosen for further analysis. The temperature used for the hydrolysis had a marked influence on the type of peptides produced and their concentration in the hydrolysate. Protease N Amano was found to produce very complex peptide mixtures; however, the partially fractionated hydrolysates had already very potent ACE inhibitory activity. The novel heptapeptide SAPLRVY was isolated and characterised. It corresponded to βLg f(36–42) and had an IC50 value of 8 μm, which is considerably lower than the most potent ACE inhibitory peptides derived from bovine βLg reported so far.
Resumo:
The complex relationship between flavonoid-based nutrition and cardiovascular disease may be dissected by understanding the activities of these compounds in biological systems. The aim of the present study was to explore a hierarchy for the importance of dietary flavonoids on cardiovascular health by examining the structural basis for inhibitory effects of common, dietary flavonoids (quercetin, apigenin, and naringenin) and the plasma metabolite, tamarixetin. Understanding flavonoid effects on platelets in vivo can be informed by investigations of the ability of these compounds to attenuate the function of these cells. Inhibition of platelet function in whole blood and plasma was structure-dependent. The order of potency was apigenin > tamarixetin > quercetin = naringenin indicating that in vivo, important functional groups are potentially a methylated B ring, and a non-hydroxylated, planar C ring. Apigenin and the methylated metabolite of quercetin, tamarixetin significantly reduced thrombus volume at concentrations (5 μM) that suggested their reported physiological levels (0.1-1 μM) may exert low levels of inhibition. Flavonoid interactions with erythrocytes, leukocytes and human serum albumin in whole blood reduce their inhibitory activities against platelet function. The diminished inhibitory activity of flavonoids that we observed in whole blood and plasma indicated that these interactions do not overcome the attenuating effects of these compounds. Furthermore, inhibition of platelet aggregation by flavonoids was enhanced with increases in exposure time, indicating the potential for measurable inhibitory effects during resident plasma times. We conclude that flavonoid structures may be a major influence of their activities in vivo with methylated metabolites and those of flavones being more potent than those of flavonols and flavanones.
Resumo:
The temperament style Behavioural Inhibition (BI) has been implicated as a risk factor for the development of internalising disorders such as anxiety. Of interest is what factors influence the developmental trajectories of both inhibited and disinhibited children and the development of psychopathology. One such factor is risk-taking behaviour. Using the computer based Balloon Analogue Risk Task, we assessed risk taking behaviour in behaviourally inhibited (n = 27) and behaviourally disinhibited (n = 43) children. This is the first study to examine the relationship between BI, executive functioning and risk-taking. The results indicated Behavioural Inhibition was not related to risk-taking but that inhibitory control predicted reward focused results. These findings illustrate how inhibitory control affects risk-taking and risk avoidance in both inhibited and disinhibited children.
Resumo:
The role of platelets in hemostasis and thrombosis is dependent on a complex balance of activatory and inhibitory signaling pathways. Inhibitory signals released from the healthy vasculature suppress platelet activation in the absence of platelet receptor agonists. Activatory signals present at a site of injury initiate platelet activation and thrombus formation; subsequently, endogenous negative signaling regulators dampen activatory signals to control thrombus growth. Understanding the complex interplay between activatory and inhibitory signaling networks is an emerging challenge in the study of platelet biology and necessitates a systematic approach to utilize experimental data effectively. In this review, we will explore the key points of platelet regulation and signaling that maintain platelets in a resting state, mediate activation to elicit thrombus formation or provide negative feedback. Platelet signaling will be described in terms of key signaling molecules that are common to the pathways activated by platelet agonists and can be described as regulatory nodes for both positive and negative regulators. This article is protected by copyright. All rights reserved.