33 resultados para In-row spacing
Resumo:
We present extensive molecular dynamics simulations of the dynamics of diluted long probe chains entangled with a matrix of shorter chains. The chain lengths of both components are above the entanglement strand length, and the ratio of their lengths is varied over a wide range to cover the crossover from the chain reptation regime to tube Rouse motion regime of the long probe chains. Reducing the matrix chain length results in a faster decay of the dynamic structure factor of the probe chains, in good agreement with recent neutron spin echo experiments. The diffusion of the long chains, measured by the mean square displacements of the monomers and the centers of mass of the chains, demonstrates a systematic speed-up relative to the pure reptation behavior expected for monodisperse melts of sufficiently long polymers. On the other hand, the diffusion of the matrix chains is only weakly perturbed by the diluted long probe chains. The simulation results are qualitatively consistent with the theoretical predictions based on constraint release Rouse model, but a detailed comparison reveals the existence of a broad distribution of the disentanglement rates, which is partly confirmed by an analysis of the packing and diffusion of the matrix chains in the tube region of the probe chains. A coarse-grained simulation model based on the tube Rouse motion model with incorporation of the probability distribution of the tube segment jump rates is developed and shows results qualitatively consistent with the fine scale molecular dynamics simulations. However, we observe a breakdown in the tube Rouse model when the short chain length is decreased to around N-S = 80, which is roughly 3.5 times the entanglement spacing N-e(P) = 23. The location of this transition may be sensitive to the chain bending potential used in our simulations.
Resumo:
The transport of stratospheric air into the troposphere within deep convection was investigated using the Met Office Unified Model version 6.1. Three cases were simulated in which convective systems formed over the UK in the summer of 2005. For each of these three cases, simulations were performed on a grid having 4 km horizontal grid spacing in which the convection was parameterized and on a grid having 1 km horizontal grid spacing, which permitted explicit representation of the largest energy-containing scales of deep convection. Cross-tropopause transport was diagnosed using passive tracers that were initialized above the dynamically defined tropopause (2 potential vorticity unit surface) with a mixing ratio of 1. Although the synoptic-scale environment and triggering mechanisms varied between the cases, the total simulated transport was similar in all three cases. The total stratosphere-to-troposphere transport over the lifetime of the convective systems ranged from 25 to 100 kg/m2 across the simulated convective systems and resolutions, which corresponds to ∼5–20% of the total mass located within a stratospheric column extending 2 km above the tropopause. In all simulations, the transport into the lower troposphere (defined as below 3.5 km elevation) accounted for ∼1% of the total transport across the tropopause. In the 4 km runs most of the transport was due to parameterized convection, whereas in the 1 km runs the transport was due to explicitly resolved convection. The largest difference between the simulations with different resolutions occurred in the one case of midlevel convection considered, in which the total transport in the 1 km grid spacing simulation with explicit convection was 4 times that in the 4 km grid spacing simulation with parameterized convection. Although the total cross-tropopause transport was similar, stratospheric tracer was deposited more deeply to near-surface elevations in the convection-parameterizing simulations than in convection-permitting simulations.
Resumo:
The ASTER Global Digital Elevation Model (GDEM) has made elevation data at 30 m spatial resolution freely available, enabling reinvestigation of morphometric relationships derived from limited field data using much larger sample sizes. These data are used to analyse a range of morphometric relationships derived for dunes (between dune height, spacing, and equivalent sand thickness) in the Namib Sand Sea, which was chosen because there are a number of extant studies that could be used for comparison with the results. The relative accuracy of GDEM for capturing dune height and shape was tested against multiple individual ASTER DEM scenes and against field surveys, highlighting the smoothing of the dune crest and resultant underestimation of dune height, and the omission of the smallest dunes, because of the 30 m sampling of ASTER DEM products. It is demonstrated that morphometric relationships derived from GDEM data are broadly comparable with relationships derived by previous methods, across a range of different dune types. The data confirm patterns of dune height, spacing and equivalent sand thickness mapped previously in the Namib Sand Sea, but add new detail to these patterns.
Resumo:
Aircraft Maintenance, Repair and Overhaul (MRO) agencies rely largely on row-data based quotation systems to select the best suppliers for the customers (airlines). The data quantity and quality becomes a key issue to determining the success of an MRO job, since we need to ensure we achieve cost and quality benchmarks. This paper introduces a data mining approach to create an MRO quotation system that enhances the data quantity and data quality, and enables significantly more precise MRO job quotations. Regular Expression was utilized to analyse descriptive textual feedback (i.e. engineer’s reports) in order to extract more referable highly normalised data for job quotation. A text mining based key influencer analysis function enables the user to proactively select sub-parts, defects and possible solutions to make queries more accurate. Implementation results show that system data would improve cost quotation in 40% of MRO jobs, would reduce service cost without causing a drop in service quality.
Resumo:
The coarse spacing of automatic rain gauges complicates near-real- time spatial analyses of precipitation. We test the possibility of improving such analyses by considering, in addition to the in situ measurements, the spatial covariance structure inferred from past observations with a denser network. To this end, a statistical reconstruction technique, reduced space optimal interpolation (RSOI), is applied over Switzerland, a region of complex topography. RSOI consists of two main parts. First, principal component analysis (PCA) is applied to obtain a reduced space representation of gridded high- resolution precipitation fields available for a multiyear calibration period in the past. Second, sparse real-time rain gauge observations are used to estimate the principal component scores and to reconstruct the precipitation field. In this way, climatological information at higher resolution than the near-real-time measurements is incorporated into the spatial analysis. PCA is found to efficiently reduce the dimensionality of the calibration fields, and RSOI is successful despite the difficulties associated with the statistical distribution of daily precipitation (skewness, dry days). Examples and a systematic evaluation show substantial added value over a simple interpolation technique that uses near-real-time observations only. The benefit is particularly strong for larger- scale precipitation and prominent topographic effects. Small-scale precipitation features are reconstructed at a skill comparable to that of the simple technique. Stratifying the reconstruction method by the types of weather type classifications yields little added skill. Apart from application in near real time, RSOI may also be valuable for enhancing instrumental precipitation analyses for the historic past when direct observations were sparse.
Resumo:
Tropical Cyclone (TC) is normally not studied at the individual level with Global Climate Models (GCMs), because the coarse grid spacing is often deemed insufficient for a realistic representation of the basic underlying processes. GCMs are indeed routinely deployed at low resolution, in order to enable sufficiently long integrations, which means that only large-scale TC proxies are diagnosed. A new class of GCMs is emerging, however, which is capable of simulating TC-type vortexes by retaining a horizontal resolution similar to that of operational NWP GCMs; their integration on the latest supercomputers enables the completion of long-term integrations. The UK-Japan Climate Collaboration and the UK-HiGEM projects have developed climate GCMs which can be run routinely for decades (with grid spacing of 60 km) or centuries (with grid spacing of 90 km); when coupled to the ocean GCM, a mesh of 1/3 degrees provides eddy-permitting resolution. The 90 km resolution model has been developed entirely by the UK-HiGEM consortium (together with its 1/3 degree ocean component); the 60 km atmospheric GCM has been developed by UJCC, in collaboration with the Met Office Hadley Centre.
Resumo:
The development of global orientation and morphological features in linear polyethylene crystallizing from a sheared melt are studied using in-situ time-resolving wide angle X-ray scattering (WAXS) and ex-situ transmission electron microscopy. It is found that samples subjected to a shear rate above a critical value of ~1s-1 result in macroscopically oriented structures in the crystallized sample. This critical shear rate appears to be independent of the differences in molecular weight distribution of the samples studied although the morphologies which develop are sensitive to quite small differences in molecular weight distributions. The presence of shish kebabs in the morphology is shown to differ markedly according to variations in the upper molecular weight fraction of the molecular weight distribution, even though the resulting global orientation does not. The WAXS also reveals that areas which evidence no row nucleated structures still realize high degrees of molecular orientation. It is proposed that the formation of shish kebab or lamellar morphologies in these samples is dependent on the critical density of contiguous elongated crystallization nuclei rather than any specific global criteria.
Resumo:
CO, O3, and H2O data in the upper troposphere/lower stratosphere (UTLS) measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer(ACE-FTS) on Canada’s SCISAT-1 satellite are validated using aircraft and ozonesonde measurements. In the UTLS, validation of chemical trace gas measurements is a challenging task due to small-scale variability in the tracer fields, strong gradients of the tracers across the tropopause, and scarcity of measurements suitable for validation purposes. Validation based on coincidences therefore suffers from geophysical noise. Two alternative methods for the validation of satellite data are introduced, which avoid the usual need for coincident measurements: tracer-tracer correlations, and vertical tracer profiles relative to tropopause height. Both are increasingly being used for model validation as they strongly suppress geophysical variability and thereby provide an “instantaneous climatology”. This allows comparison of measurements between non-coincident data sets which yields information about the precision and a statistically meaningful error-assessment of the ACE-FTS satellite data in the UTLS. By defining a trade-off factor, we show that the measurement errors can be reduced by including more measurements obtained over a wider longitude range into the comparison, despite the increased geophysical variability. Applying the methods then yields the following upper bounds to the relative differences in the mean found between the ACE-FTS and SPURT aircraft measurements in the upper troposphere (UT) and lower stratosphere (LS), respectively: for CO ±9% and ±12%, for H2O ±30% and ±18%, and for O3 ±25% and ±19%. The relative differences for O3 can be narrowed down by using a larger dataset obtained from ozonesondes, yielding a high bias in the ACEFTS measurements of 18% in the UT and relative differences of ±8% for measurements in the LS. When taking into account the smearing effect of the vertically limited spacing between measurements of the ACE-FTS instrument, the relative differences decrease by 5–15% around the tropopause, suggesting a vertical resolution of the ACE-FTS in the UTLS of around 1 km. The ACE-FTS hence offers unprecedented precision and vertical resolution for a satellite instrument, which will allow a new global perspective on UTLS tracer distributions.
Resumo:
An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km. The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10–50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency, precipitation intensity, and quantiles of the frequency distribution. For mean precipitation, the models reproduce the characteristics of the annual cycle and the spatial distribution. The domain mean bias varies between −23% and +3% in winter and between −27% and −5% in summer. Larger errors are found for other statistics. In summer, all models underestimate precipitation intensity (by 16–42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models. Similar intermodel differences are found for other European subregions. Interestingly, the model errors are very similar between the two models with the same dynamical core (but different parameterizations) and they differ considerably between the two models with similar parameterizations (but different dynamics). Despite considerable biases, the models reproduce prominent mesoscale features of heavy precipitation, which is a promising result for their use in climate change downscaling over complex topography.
Resumo:
Field experiments were conducted in northern Greece in 2003 and 2004 to evaluate effects of tillage regimes (moldboard plowing, chisel plowing, and rotary tilling), cropping sequences(continuous cotton, cotton-sugar beet rotation,and continuous tobacco) and herbicide treatments with inter-row hand hoeing on weed population densities. Total weed densities were not affected by tillage treatment except that of barnyardgrass (Echinochloa crus-galli), which increased only in moldboard plowing treated plots during 2003. Redroot pigweed (Amaranthus retroflexus)and black nightshade (Solanum nigrum) densities were reduced in continuous cotton, while purple nutsedge (Cyperus rotundus), E. crus-galli, S. nigrum, and johnsongras(Sorghum halepense) densities were reduced in tobacco. A. retroflexus and S. nigrum were effectively controlled by all herbicide treatments with inter-row hand hoeing,whereas E. crus-galli was effectively reduced by herbicides applied to cotton and tobacco. S. halepense density reduction was a result of herbicide applied to tobacco with inter-row hand hoeing. Yield of all crops was higher under moldboard plowing and herbicide treatments. Pre-sowing and pre-emergence herbicide treatments in cotton and pre-transplant in tobacco integrated with inter-row cultivation resulted in efficient control of annual weed species and good crop yields. These observations are of practical relevance to crop selection by farmers in order to maintain weed populations at economically acceptable densities through the integration of various planting dates, sustainable herbicide use and inter-row cultivation; tools of great importance in integrated weed management systems. Keywords: cropping sequence, herbicide, integrated weed management, inter-row cultivation,tillage.
Resumo:
The ‘trophic level enrichment’ between diet and body results in an overall increase in nitrogen isotopic values as the food chain is ascended. Quantifying the diet–body Δ15N spacing has proved difficult, particularly for humans. The value is usually assumed to be +3-5‰ in the archaeological literature. We report here the first (to our knowledge) data from humans on isotopically known diets, comparing dietary intake and a body tissue sample, that of red blood cells. Samples were taken from 11 subjects on controlled diets for a 30-d period, where the controlled diets were designed to match each individual’s habitual diet, thus reducing problems with short-term changes in diet causing isotopic changes in the body pool. The Δ15Ndiet-RBC was measured as +3.5‰. Using measured offsets from other studies, we estimate the human Δ15Ndiet-keratin as +5.0-5.3‰, which is in good agreement with values derived from the two other studies using individual diet records. We also estimate a value for Δ15Ndiet-collagen of ≈6‰, again in combination with measured offsets from other studies. This value is larger than usually assumed in palaeodietary studies, which suggests that the proportion of animal protein in prehistoric human diet may have often been overestimated in isotopic studies of palaeodiet.
Resumo:
High-resolution simulations over a large tropical domain (∼20◦S–20◦N and 42◦E–180◦E) using both explicit and parameterized convection are analyzed and compared to observations during a 10-day case study of an active Madden-Julian Oscillation (MJO) event. The parameterized convection model simulations at both 40 km and 12 km grid spacing have a very weak MJO signal and little eastward propagation. A 4 km explicit convection simulation using Smagorinsky subgrid mixing in the vertical and horizontal dimensions exhibits the best MJO strength and propagation speed. 12 km explicit convection simulations also perform much better than the 12 km parameterized convection run, suggesting that the convection scheme, rather than horizontal resolution, is key for these MJO simulations. Interestingly, a 4 km explicit convection simulation using the conventional boundary layer scheme for vertical subgrid mixing (but still using Smagorinsky horizontal mixing) completely loses the large-scale MJO organization, showing that relatively high resolution with explicit convection does not guarantee a good MJO simulation. Models with a good MJO representation have a more realistic relationship between lower-free-tropospheric moisture and precipitation, supporting the idea that moisture-convection feedback is a key process for MJO propagation. There is also increased generation of available potential energy and conversion of that energy into kinetic energy in models with a more realistic MJO, which is related to larger zonal variance in convective heating and vertical velocity, larger zonal temperature variance around 200 hPa, and larger correlations between temperature and ascent (and between temperature and diabatic heating) between 500–400 hPa.
Resumo:
The self-assembly in water of designed peptide amphiphile (PA) C16-ETTES containing two anionic residues and its mixtures with C16-KTTKS containing two cationic residues has been investigated. Multiple spectroscopy, microscopy, and scattering techniques are used to examine ordering extending from the β-sheet structures up to the fibrillar aggregate structure. The peptide amphiphiles both comprise a hexadecyl alkyl chain and a charged pentapeptide headgroup containing two charged residues. For C16-ETTES, the critical aggregation concentration was determined by fluorescence experiments. FTIR and CD spectroscopy were used to examine β-sheet formation. TEM revealed highly extended tape nanostructures with some striped regions corresponding to bilayer structures viewed edge-on. Small-angle X-ray scattering showed a main 5.3 nm bilayer spacing along with a 3 nm spacing. These spacings are assigned respectively to predominant hydrated bilayers and a fraction of dehydrated bilayers. Signs of cooperative self-assembly are observed in the mixtures, including reduced bundling of peptide amphiphile aggregates (extended tape structures) and enhanced β-sheet formation.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
For children with developmental dyslexia the already challenging task of learning to read is made harder by difficulties with phonological processing and perceptual distortions. As a result, these children may be less motivated to practise their literacy skills. This is problematic in that literacy can only be gained through constant and continued exposure to reading scenarios, and children who are unmotivated to practise are unlikely to develop into fluent readers. Children are active in choosing the books they read and it is therefore important to understand how the typography in those books influences their choice. Research with typically developing children has shown that they have clear opinions about the typography in their reading materials and that these opinions are likely to influence their motivation to read particular books. However, it cannot be assumed that children with reading difficulties read and respond to texts in the same way as children who do not struggle. Through case-studies of three children with reading difficulties, preferences for the typography in their reading books is examined. Looking at elements of typesetting such as spacing and size shows that this group of children is aware of differences in typography and that they have preferences for how their reading books are typeset. These children showed a preference for books that resembled those that their peers are reading rather than those that would, by typographic convention, be considered easier to read. This study is part of ongoing research into the development of alternative materials for teaching literacy skills to children with dyslexia.