25 resultados para Impulse response
Resumo:
Recent studies have shown that the haemodynamic responses to brief (<2 secs) stimuli can be well characterised as a linear convolution of neural activity with a suitable haemodynamic impulse response. In this paper, we show that the linear convolution model cannot predict measurements of blood flow responses to stimuli of longer duration (>2 secs), regardless of the impulse response function chosen. Modifying the linear convolution scheme to a nonlinear convolution scheme was found to provide a good prediction of the observed data. Whereas several studies have found a nonlinear coupling between stimulus input and blood flow responses, the current modelling scheme uses neural activity as an input, and thus implies nonlinearity in the coupling between neural activity and blood flow responses. Neural activity was assessed by current source density analysis of depth-resolved evoked field potentials, while blood flow responses were measured using laser Doppler flowmetry. All measurements were made in rat whisker barrel cortex after electrical stimulation of the whisker pad for 1 to 16 secs at 5 Hz and 1.2 mA (individual pulse width 0.3 ms).
Resumo:
We consider the forecasting performance of two SETAR exchange rate models proposed by Kräger and Kugler [J. Int. Money Fin. 12 (1993) 195]. Assuming that the models are good approximations to the data generating process, we show that whether the non-linearities inherent in the data can be exploited to forecast better than a random walk depends on both how forecast accuracy is assessed and on the ‘state of nature’. Evaluation based on traditional measures, such as (root) mean squared forecast errors, may mask the superiority of the non-linear models. Generalized impulse response functions are also calculated as a means of portraying the asymmetric response to shocks implied by such models.
Resumo:
Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.
Resumo:
A practical orthogonal frequency-division multiplexing (OFDM) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. In this contribution, we advocate a novel nonlinear equalization scheme for OFDM Hammerstein systems. We model the nonlinear HPA, which represents the static nonlinearity of the OFDM Hammerstein channel, by a B-spline neural network, and we develop a highly effective alternating least squares algorithm for estimating the parameters of the OFDM Hammerstein channel, including channel impulse response coefficients and the parameters of the B-spline model. Moreover, we also use another B-spline neural network to model the inversion of the HPA’s nonlinearity, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalization of the OFDM Hammerstein channel can then be accomplished by the usual one-tap linear equalization as well as the inverse B-spline neural network model obtained. The effectiveness of our nonlinear equalization scheme for OFDM Hammerstein channels is demonstrated by simulation results.
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.
Resumo:
This paper studies the impact of exogenous and endogenous shocks (exogenous shock is used interchangeably with external shock; endogenous shock is used interchangeably with domestic shock) on output fluctuations in post-communist countries during the 2000s. The first part presents the analytical framework and formulates a research hypothesis. The second part presents vector autoregressive estimation and analysis model proposed by Pesaran (2004) and Pesaran and Smith (2006) that relates bank real lending, the cyclical component of output and spreads and accounts for cross-sectional dependence (CD) across the countries. Impulse response functions show that exogenous positive shock lead to a drop in output sustainability for 9 over 12 Central Eastern European countries and Russia, when the endogenous shock is mild and ambiguous. Moreover, the effect of exogenous shock is more significant during the crises. Variance decompositions show that exogenous shock in the aftermath of crisis had a substantial impact on economic activity of emerging economies.
Resumo:
This study investigates the human response to impulse perturbations at the midpoint of a haptically-guided straight-line point-to-point movement. Such perturbation response may be used as an assessment tool during robot-mediated neuro-rehabilitation therapy. Subjects show variety in their perturbation responses. Movements with a lower perturbation displacement exhibit high frequency oscillations, indicative of increased joint stiffness. Equally, movements with a high perturbation displacement exhibit lower frequency oscillations with higher amplitude and a longer settling time. Some subjects show unexpected transients during the perturbation impulse, which may be caused by complex joint interactions in the hand and arm.
Resumo:
The design of high-voltage equipment encompasses the study of oscillatory surges caused by transients such as those produced by switching. By obtaining a model, the response of which reconstructs that observed in the actual system, simulation studies and critical tests can be carried out on the model rather than on the equipment itself. In this paper, methods for the construction of simplified models are described and it is shown how the use of a complex model does not necessarily result in superior response pattern reconstruction.
Resumo:
The terrestrial magnetopause suffered considerable sudden changes in its location on 9–10 September 1978. These magnetopause motions were accompanied by disturbances of the geomagnetic field on the ground. We present a study of the magnetopause motions and the ground magnetic signatures using, for the latter, 10 s averaged data from 14 high latitude ground magnetometer stations. Observations in the solar wind (from IMP 8) are employed and the motions of the magnetopause are monitored directly by the spacecraft ISEE 1 and 2. With these coordinated observations we are able to show that it is the sudden changes in the solar wind dynamic pressure that are responsible for the disturbances seen on the ground. At some ground stations we see evidence of a “ringing” of the magnetospheric cavity, while at others only the initial impulse is evident. We note that at some stations field perturbations closely match the hypothesized ground signatures of flux transfer events. In accordance with more recent work in the area (e.g. Potemra et al., 1989, J. geophys. Res., in press), we argue that causes other than impulsive reeonnection may produce the twin ionospheric flow vortex originally proposed as a flux transfer even signature.