70 resultados para Impedance Sensing
Resumo:
The results of a study of the variation of three-phase induction machines' input impedance with frequency are proposed. A range of motors were analysed, both two-pole and four-pole, and the magnitude and phase of the input impedance were obtained over a wide frequency range of 20 Hz-1 MHz. For test results that would be useful in the prediction of the performance of induction machines during typical use, a test procedure was developed to represent closely typical three-phase stator coil connections when the induction machine is driven by a three-phase inverter. In addition, tests were performed with the motor's cases both grounded and not grounded. The results of the study show that all induction machines of the type considered exhibit a multiresonant impedance profile, where the input impedance reaches at least one maximum as the input frequency is increased. Furthermore, the test results show that the grounding of the motor's case has a significant effect on the impedance profile. Methods to exploit the input impedance profile of an induction machine to optimise machine and inverter systems are also discussed.
Resumo:
The study of the morphology of tidal networks and their relation to salt marsh vegetation is currently an active area of research, and a number of theories have been developed which require validation using extensive observations. Conventional methods of measuring networks and associated vegetation can be cumbersome and subjective. Recent advances in remote sensing techniques mean that these can now often reduce measurement effort whilst at the same time increasing measurement scale. The status of remote sensing of tidal networks and their relation to vegetation is reviewed. The measurement of network planforms and their associated variables is possible to sufficient resolution using digital aerial photography and airborne scanning laser altimetry (LiDAR), with LiDAR also being able to measure channel depths. A multi-level knowledge-based technique is described to extract networks from LiDAR in a semi-automated fashion. This allows objective and detailed geomorphological information on networks to be obtained over large areas of the inter-tidal zone. It is illustrated using LIDAR data of the River Ems, Germany, the Venice lagoon, and Carnforth Marsh, Morecambe Bay, UK. Examples of geomorphological variables of networks extracted from LiDAR data are given. Associated marsh vegetation can be classified into its component species using airborne hyperspectral and satellite multispectral data. Other potential applications of remote sensing for network studies include determining spatial relationships between networks and vegetation, measuring marsh platform vegetation roughness, in-channel velocities and sediment processes, studying salt pans, and for marsh restoration schemes.
Resumo:
An eddy current testing system consists of a multi-sensor probe, a computer and a special expansion card and software for data-collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
An eddy current testing system consists of a multi-sensor probe, computer and a special expansion card and software for data collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
The Heliospheric Imager (HI) instruments on board the STEREO spacecraft are used to analyze the solar wind during August and September 2007. We show how HI can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates inside and in the vicinity of the streamer belt. Intermittent mass flows are observed in HI difference images, streaming out along the extension of helmet streamers. These flows can appear very differently in images: plasma distributed on twisted flux ropes, V‐shaped structures, or “blobs.” The variety of these transient features may highlight the richness of phenomena that could occur near helmet streamers: emergence of flux ropes, reconnection of magnetic field lines at the tip of helmet streamers, or disconnection of open magnetic field lines. The plasma released with these transient events forms part of the solar wind in the higher corona; HI observations show that these transients are frequently entrained by corotating interaction regions (CIRs), leading to the formation of larger, brighter plasma structures in HI images. This entrainment is used to estimate the trajectory of these plasma ejecta. In doing so, we demonstrate that successive transients can be entrained by the same CIR in the high corona if they emanate from the same corotating source. Some parts of the streamers are more effective sources of transients than others. Surprisingly, evidence is given for the outflow of a recurring twisted magnetic structure, suggesting that the emergence of flux ropes can be recurrent.
Resumo:
Jerdon's Courser Rhinoptilus bitorquatus is one of the most endangered and least understood birds in the world. It is endemic to scrub habitats in southeast India which have been lost and degraded because of human land use. We used satellite images from 1991 and 2000 and two methods for classifying land cover to quantify loss of Jerdon's Courser habitat. The scrub habitats on which this species depends decreased in area by 11-15% during this short period (9.6 years), predominantly as a result of scrub clearance and conversion to agriculture. The remaining scrub patches were smaller and further from human settlements in 2000 than in 1991, implying that much of the scrub loss had occurred close to human population centres. We discuss the implications of our results for the conservation of Jerdon's Courser and the use of remote sensing methods in conservation.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modeling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
A novel, pyrene-functionalised copolymer has been synthesised in a single step via imidisation of poly(maleic anhydride-alt-1-octadecene) with 1-pyrenemethylamine, and its potential for the detection of volatile nitro aromatic compounds (NACs) evaluated. The new copolymer forms complexes in solution with NACs such as 2,5-dinitrobenzonitrile, as shown by H-1 NMR, UV-vis and fluorescence spectroscopy. Moreover, thin films of this copolymer, cast from THF solution, undergo almost instantaneous fluorescence quenching when exposed to the vapour of 2,5-dinitrobenzonitrile (a model for TNT) at ambient temperatures and pressures.
Resumo:
WO3-based materials as sensors for the monitor of environmental gases such as NO2 (NO + NO2) have been rapidly developed for various potential applications (stationary and mobile uses). It has been reported that these materials are highly sensitive to NOx with the sensitivity further enhanced by adding precious group metals (PGM such as Pt, Pd, Au, etc.). However, there has been limited work in revealing the sensing mechanism for these gases over the WO3-based sensors. In particular, the role of promoter is not yet clear though speculations on their catalytic, electronic and structural effects have been made in the past. In parallel to these PGM promoters here we report,for the first time, that Ag promotion can also enhance WO3 sensitivity significantly. In addition, this promotion decreases the optimum sensor temperature of 300 degreesC for Most WO3-based sensors, to below 200 degreesC. Characterizations (XRD, TEM, and impedance measurement) reveal that there is no significant bulk structure change nor particle size alteration in the WO3 phases during the NO exposure. However, it is found that the Ag doping creates a high concentration of oxygen vacancies in form of coordinated crystallographic shear (CS) planes onto the underneath WO3. It is thus proposed that the Ag particle facilitates the oxidative conversion of NO to NO2 followed by a subsequent NO2 adsorption on the defective WO, sites created at the Ag-WO3 interface; hence, accounting for the high molecular sensitivity. (C) 2002 Elsevier Science B.V. All rights reserved.