35 resultados para Impatto ambientale, Certificazione LEED, Risparmio energetico, Piastrelle ceramiche
Resumo:
We have studied enantiospecific differences in the adsorption of (S)- and (R)-alanine on Cu{531}R using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. At saturation coverage, alanine adsorbs as alaninate forming a p(1 4) superstructure. LEED shows a significantly higher degree of long-range order for the S than for the R enantiomer. Also carbon K-edge NEXAFS spectra show differences between (S)- and (R)-alanine in the variations of the ð resonance when the linear polarization vector is rotated within the surface plane. This indicates differences in the local adsorption geometries of the molecules, most likely caused by the interaction between the methyl group and the metal surface and/or intermolecular hydrogen bonds. Comparison with model calculations and additional information from LEED and photoelectron spectroscopy suggest that both enantiomers of alaninate adsorb in two different orientations associated with triangular adsorption sites on {110} and {311} microfacets of the Cu{531} surface. The experimental data are ambiguous as to the exact difference between the local geometries of the two enantiomers. In one of two models that fit the data equally well, significantly more (R)-alaninate molecules are adsorbed on {110} sites than on {311} sites whereas for (S)-alaninate the numbers are equal. The enantiospecific differences found in these experiments are much more pronounced than those reported from other ultrahigh vacuum techniques applied to similar systems.
Resumo:
The low-energy electron diffraction (LEED) pattern of the step-kinked Pt{531} surface at 200 K shows energy-dependent cancellation of diffraction spots over unusually large energy ranges, up to 100 eV. This cannot be reproduced theoretically when a flat surface geometry is assumed. A relatively simple model of roughening, however, involving 0.25 ML of vacancies and adatoms leads to very good agreement with the experiment. The cancellation of intensities within a very narrow range of adatom or vacancy coverages is caused by the interference of electrons emerging from different heights but similar local environments. This is a rare example where the energy dependence of integrated LEED spot intensities is dramatically affected by the long-range arrangement of atoms.
Resumo:
The adsorption of NO on Ir{100} has been studied as a function of NO coverage and temperature using temperature programmed reflection absorption infrared spectroscopy (TP-RAIRS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). After saturating the clean (1 x 5)-reconstructed surface with NO at 95 K. two N-2, desorption peaks are observed upon heating. The first N-2 peak at 346 K results from the decomposition of bridge-bonded NO, and the second at 475 K from the decomposition of atop-bonded NO molecules. NO decomposition is proposed to be the rate limiting step for both N-2 desorption states. For high NO coverages on the (1 x 5) surface, the narrow width of the first N-2 desorption peak is indicative of an autocatalytic process for which the parallel formation of N2O appears to be the crucial step. When NO is adsorbed on the metastable unreconstructed (1 x 1) phase of clean Ir{100} N-2 desorption starts at lower temperatures, indicating that this surface modification is more reactive. When a high coverage of oxygen, near 0.5 ML, is pre-adsorbed on the surface, the decomposition of NO is inhibited and mainly desorption of intact NO is observed.
Resumo:
We present a novel approach to calculating Low-Energy Electron Diffraction (LEED) intensities for ordered molecular adsorbates. First, the intra-molecular multiple scattering is computed to obtain a non-diagonal molecular T-matrix. This is then used to represent the entire molecule as a single scattering object in a conventional LEED calculation, where the Layer Doubling technique is applied to assemble the different layers, including the molecular ones. A detailed comparison with conventional layer-type LEED calculations is provided to ascertain the accuracy of this scheme of calculation. Advantages of this scheme for problems involving ordered arrays of molecules adsorbed on surfaces are discussed.
Resumo:
The adsorption of oxygen on the chiral Pt{531} surface was studied by high-resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). After the surface is annealed in oxygen (3 x 10(-7) mbar), three O 1s peaks are observed in XPS. One peak, at 529.5 eV, is assigned to chemisorbed oxygen; it disappears after annealing in vacuo to temperatures above 900 K. The other two peaks at 530.8 and 532.3 eV are stable up to at least 1250 K. They are associated with oxide clusters on the surface. These clusters readily react with coadsorbed carbon monoxide at temperatures between 315 and 620 K.
Resumo:
Core-level photoelectron spectra, in excellent agreement with ab initio calculations, confirm that the stable wetting layer of water on Ru{0001} contains O-H and H2O in roughly 3:5 proportion, for OHx coverages between 0.25 and 0.7 ML, and T<170 K. Proton disorder explains why the wetting structure looks to low energy electron diffraction (LEED) to be an ordered p(root3xroot3)R30degrees adlayer, even though approximate to3/8 of its molecules are dissociated. Complete dissociation to atomic oxygen starts near 190 K. Low photon flux in the synchrotron experiments ensured that the diagnosis of the nature of the wetting structure quantified by LEED is free of beam-induced damage.
Resumo:
The low-temperature reactivity of water (D2O) adsorbed on clean and oxygen pre-covered Cu(1 1 0) was studied using high resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). On the clean surface partial dissociation to hydroxyl was observed already at 95 K. Upon annealing to 220 K hydrogen bonded water-hydroxyl chains are formed. Upon further annealing water desorbs leaving behind a layer of hydroxyl, most of which desorbs recombinatively eventually. With pre-adsorbed oxygen water reacts to hydroxyl lifting the added-row reconstruction even below 225 K. Upon annealing this adsorbate layer passes through essentially the same stages as without pre-adsorbed oxygen.
Resumo:
Low energy electron diffraction (LEED) structure determinations have been performed for the p(2 x 2) structures of pure oxygen and oxygen co-adsorbed with CO on Ni{111}. Optimisation of the non-geometric parameters led to very good agreement between experimental and theoretical IV-curves and hence to a high accuracy in the structural parameters. In agreement with earlier work atomic oxygen is found to adsorb on fee sites in both structures. In the co-adsorbed phase CO occupies atop sites. The positions of the substrate atoms are almost identical, within 0.02 Angstrom, in both structures, implying that the interaction with oxygen dominates the arrangement of Ni atoms at the surface.
Resumo:
This paper investigates the effect of voluntary eco-certification on the rental and sale prices of US commercial office properties. Hedonic and logistic regressions are used to test whether there are rental and sale price premiums for LEED and Energy Star certified buildings. The results of the hedonic analysis suggest that there is a rental premium of approximately 6% for LEED and Energy Star certification. A sale price premium of approximately 35% was found for 127 price observations involving LEED rated buildings and 31% for 662 buildings involving Energy Star rated buildings. When compared to samples of similar buildings identified by a binomial logistic regression for LEED-certified buildings, the existence of a rent and sales price premium is confirmed albeit with differences regarding the magnitude of the premium. Overall, the results of this study confirm that LEED and Energy Star buildings exhibit higher rental rates and sales prices per square foot controlling for a large number of location- and property-specific factors.
Resumo:
This paper investigates whether obtaining sustainable building certification entails a rental premium for commercial office buildings and tracks its development over time. To this aim, both a difference-in-differences and a fixed-effects model approach are applied to a large panel dataset of office buildings in the United States in the 2000–2010 period. The results indicate a significant rental premium for both ENERGY STAR and LEED certified buildings. Controlling for confounding factors, this premium is shown to have increased steadily from 2006 to 2008, followed by a moderate decline in the subsequent periods. The results also show a significant positive relationship between ENERGY STAR labeling and building occupancy rates.
Resumo:
We present a quantitative low energy electron diffraction (LEED) surface-crystallograpic study of the complete adsorption geometry of glycine adsorbed on Cu{110} in the ordered p(3×2) phase. The glycine molecules form bonds to the surface through the N atoms of the amino group and the two O atoms of the de-protonated carboxylate group, each with separate Cu atoms such that every Cu atom in the first layer is involved in a bond. Laterally, N atoms are nearest to the atop site (displacement 0.41 Å). The O atoms are asymmetrically displaced from the atop site by 0.54 Å and 1.18 Å with two very different O-Cu bond lengths of 1.93 Å and 2.18 Å. The atom positions of the upper-most Cu layers show small relaxations within 0.07 Å of the bulk-truncated surface geometry. The unit cell of the adsorbate layer consists of two glycine molecules, which are related by a glide-line symmetry operation. This study clearly shows that a significant coverage of adsorbate structures without this glide-line symmetry must be rejected, both on the grounds of the energy dependence of the spot intensities (LEED-IV curves) and of systematic absences in the LEED pattern.
Resumo:
This paper investigates the price effects of environmental certification on commercial real estate assets. It is argued that there are likely to be three main drivers of price differences between certified and non-certified buildings. First, certified buildings offer a bundle of benefits to occupiers relating to business productivity, image and occupancy costs. Second, due to these occupier benefits, certified buildings can result in higher rents and lower holding costs for investors. Third, certified buildings may require a lower risk premium. Drawing upon the CoStar database of US commercial real estate assets, hedonic regression analysis is used to measure the effect of certification on both rent and price. We first estimate the rental regression for a sample of 110 LEED and 433 Energy Star as well as several thousand benchmark buildings to compare the sample to. The results suggest that, compared to buildings in the same metropolitan region, certified buildings have a rental premium and that the more highly rated that buildings are in terms of their environmental impact, the greater the rental premium. Furthermore, based on a sample of transaction prices for 292 Energy Star and 30 LEED-certified buildings, we find price premia of 10% and 31% respectively compared to non-certified buildings in the same metropolitan area
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
Building assessment methods have become a popular research field since the early 1990s. An international tool which allows the assessment of buildings in all regions, taking into account differences in climates, topographies and cultures does not yet exist. This paper aims to demonstrate the importance of criteria and sub-criteria in developing a new potential building assessment method for Saudi Arabia. Recently, the awareness of sustainability has been increasing in developing countries due to high energy consumption, pollution and high carbon foot print. There is no debate that assessment criteria have an important role to identify the tool’s orientation. However, various aspects influence the criteria and sub-criteria of assessment tools such as environment, economic, social and cultural to mention but a few. The author provides an investigation on the most popular and globally used schemes: BREEAM, LEED, Green Star, CASBEE and Estidama in order to identify the effectiveness of the different aspects of the assessment criteria and the impacts of these criteria on the assessment results; that will provide a solid foundation to develop an effective sustainable assessment method for buildings in Saudi Arabia. Initial results of the investigation suggest that each country needs to develop its own assessment method in order to achieve desired results, while focusing upon the indigenous environmental, economic, social and cultural conditions. Keywords: Assessment methods, BREEAM, LEED, Green Star, CASBEE, Estidama, sustainability, sustainable buildings, Environment, Saudi Arabia.
Resumo:
We have investigated the (001) surface structure of lithium titanate (Li2TiO3) using auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Li2TiO3 is a potential fusion reactor blanket material. After annealing at 1200 K, LEED demonstrated that the Li2TiO3(001) surface was well ordered and not reconstructed. STM imaging showed that terraces are separated in height by about 0.3 nm suggesting a single termination layer. Moreover, hexagonal patterns with a periodicity of ∼0.4 nm are observed. On the basis of molecular dynamics (MD) simulations, these are interpreted as a dynamic arrangement of Li atoms.