21 resultados para IP camera
Resumo:
The stylistic strategies, in particular those concerning camera placement and movement, of The Shield (FX, 2002-08) seem to directly fit into an aesthetic tradition developed by US cop dramas like Hill Street Blues (NBC, 1981-87), Homicide: Life on the Street (NBC, 1993-99) and NYPD Blue (ABC, 1993-2005). In these precinct dramas, decisions concerning spatial arrangements of camera and performer foreground a desire to present and react to action while it is happening, and with a minimum of apparent construction. As Jonathan Bignell (2009) has argued, the intimacy and immediacy of this stylistic approach, which has at its core an attempt at a documentary-like realism, is important to the police drama as a genre, while also being tendencies that have been taken as specific characteristics of television more generally. I explore how The Shield develops this tradition of a reactive camera style in its strategy of shooting with two cameras rather than one, with specific attention to how this shapes the presentation of performance. Through a detailed examination of the relationship between performer and camera(s) the chapter considers the way the series establishes access to the fictional world, which is crucial to the manner of police investigation central to its drama, and the impact of this on how we engage with performance. The cameras’ placement appears to balance various impulses, including: the demands of attending to an ensemble cast, spontaneous performance style, and action that is physically dynamic and involving. In a series that makes stylistic decisions around presentation of the body on-screen deliberately close yet obstructive, involving yet fleeting, the chapter explores the affect of this on the watching experience.
Resumo:
Traditionally, spoor (tracks, pug marks) have been used as a cost effective tool to assess the presence of larger mammals. Automated camera traps are now increasingly utilized to monitor wildlife, primarily as the cost has greatly declined and statistical approaches to data analysis have improved. While camera traps have become ubiquitous, we have little understanding of their effectiveness when compared to traditional approaches using spoor in the field. Here, we a) test the success of camera traps in recording a range of carnivore species against spoor; b) ask if simple measures of spoor size taken by amateur volunteers is likely to allow individual identification of leopards and c) for a trained tracker, ask if this approach may allow individual leopards to be followed with confidence in savannah habitat. We found that camera traps significantly under-recorded mammalian top and meso-carnivores, with camera traps more likely under-record the presence of smaller carnivores (civet 64%; genet 46%, Meller’s mongoose 45%) than larger (jackal sp. 30%, brown hyena 22%), while leopard was more likely to be recorded by camera trap (all recorded by camera trap only). We found that amateur trackers could be beneficial in regards to collecting presence data; however the large variance in measurements of spoor taken in the field by volunteers suggests that this approach is unlikely to add further data. Nevertheless, the use of simple spoor measurements in the field by a trained field researcher increases their ability to reliably follow a leopard trail in difficult terrain. This allows researchers to glean further data on leopard behaviour and habitat utilisation without the need for complex analysis.
Resumo:
Many institutions worldwide have developed ocean reanalyses systems (ORAs) utilizing a variety of ocean models and assimilation techniques. However, the quality of salinity reanalyses arising from the various ORAs has not yet been comprehensively assessed. In this study, we assess the upper ocean salinity content (depth-averaged over 0–700 m) from 14 ORAs and 3 objective ocean analysis systems (OOAs) as part of the Ocean Reanalyses Intercomparison Project. Our results show that the best agreement between estimates of salinity from different ORAs is obtained in the tropical Pacific, likely due to relatively abundant atmospheric and oceanic observations in this region. The largest disagreement in salinity reanalyses is in the Southern Ocean along the Antarctic circumpolar current as a consequence of the sparseness of both atmospheric and oceanic observations in this region. The West Pacific warm pool is the largest region where the signal to noise ratio of reanalysed salinity anomalies is >1. Therefore, the current salinity reanalyses in the tropical Pacific Ocean may be more reliable than those in the Southern Ocean and regions along the western boundary currents. Moreover, we found that the assimilation of salinity in ocean regions with relatively strong ocean fronts is still a common problem as seen in most ORAs. The impact of the Argo data on the salinity reanalyses is visible, especially within the upper 500m, where the interannual variability is large. The increasing trend in global-averaged salinity anomalies can only be found within the top 0–300m layer, but with quite large diversity among different ORAs. Beneath the 300m depth, the global-averaged salinity anomalies from most ORAs switch their trends from a slightly growing trend before 2002 to a decreasing trend after 2002. The rapid switch in the trend is most likely an artefact of the dramatic change in the observing system due to the implementation of Argo.
Resumo:
Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-layer-depth, upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea ice thickness, salinity), providing guidance for future enhancement of the observing and data assimilation systems.
Resumo:
Ocean–sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent relatively well. However, the ensemble can not be used to get a robust estimate of recent trends in the Arctic sea ice volume. Biases in the reanalyses certainly impact the simulated air–sea fluxes in the polar regions, and questions the suitability of current sea ice reanalyses to initialize seasonal forecasts.
Resumo:
In order to gain insights into events and issues that may cause errors and outages in parts of IP networks, intelligent methods that capture and express causal relationships online (in real-time) are needed. Whereas generalised rule induction has been explored for non-streaming data applications, its application and adaptation on streaming data is mostly undeveloped or based on periodic and ad-hoc training with batch algorithms. Some association rule mining approaches for streaming data do exist, however, they can only express binary causal relationships. This paper presents the ongoing work on Online Generalised Rule Induction (OGRI) in order to create expressive and adaptive rule sets real-time that can be applied to a broad range of applications, including network telemetry data streams.