55 resultados para INVERTEBRATE CARTILAGES
Resumo:
Agricultural management of grassland in lowland Britain has changed fundamentally in the last 50 years, resulting in spatial and structural uniformity within the pastoral landscape. The full extent to which these changes may have reduced the suitability of grassland as foraging habitat for birds is unknown. This study investigated the mechanisms by which these changes have impacted on birds and their food supplies. We quantified field use by birds in summer and winter in two grassland areas of lowland England (Devon and Buckinghamshire) over 3 years, relating bird occurrence to the management, sward structure and seed and invertebrate food resources of individual fields. Management intensity was defined in terms of annual nitrogen input. There was no consistent effect of management intensity on total seed head production, although those of grasses generally increased with inputs while forbs were rare throughout. Relationships between management intensity and abundance of soil and epigeal invertebrates were complex. Soil beetle larvae were consistently lower in abundance, and surface-active beetle larvae counts consistently higher, in intensively managed fields. Foliar invertebrates showed more consistent negatively relationships with management intensity. Most bird species occurred at low densities. There were consistent relationships across regions and years between the occurrence of birds and measures of field management. In winter, there was a tendency towards higher occupancy of intensively managed fields by species feeding on soil invertebrates. In summer, there were few such relationships, although many species avoided fields with tall swards. Use of fields by birds was generally not related to measures of seed or invertebrate food abundance. While granivorous species were perhaps too rare to detect a relationship, in insectivores the strong negative relationships (in summer) with sward height suggested that access to food may be the critical factor. While it appears that intensification of grassland management has been deleterious to the summer food resources of insectivorous birds that use insects living within the grass sward, intensification may have been beneficial to several species in winter through the enhancement of soil invertebrates. Synthesis and applications. We suggest that attempts to restore habitat quality for birds in grassland landscapes need to create a range of management intensities and sward structures at the field and farm scales. A greater understanding of methods to enhance prey accessibility, as well as abundance, for insectivorous birds is required.
Resumo:
A species of the hyper-parasitic bacterium Pasteuria was isolated from the root-knot nematode Meloidogyne ardenensis infecting the roots of ash (Fraxinus excelsior). It is morphologically different from some other Pasteuria pathogens of nematodes in that the spores lack a basal ring on the ventral side of the spore and have a unique clumping nature. Transmission electron microscopy (TEM) showed that the clumps of spores are not random aggregates but result from the disintegration of the suicide cells of the thalli. Sporulation within each vegetative mycelium was shown to be asynchronous. In addition to the novel morphological features 16S rRNA sequence analysis showed this to be a new species of Pasteuria which we have called P. hartismeri. Spores of P. hartismeri attach to juveniles of root-knot nematodes infecting a wide range of plants such as mint (Meloidogyne hapla), rye grass (unidentified Meloidogyne sp.) and potato (Meloidogyne fallax). (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
1. Suction sampling is a popular method for the collection of quantitative data on grassland invertebrate populations, although there have been no detailed studies into the effectiveness of the method. 2. We investigate the effect of effort (duration and number of suction samples) and sward height on the efficiency of suction sampling of grassland beetle, true bug, planthopper and spider Populations. We also compare Suction sampling with an absolute sampling method based on the destructive removal of turfs. 3. Sampling for durations of 16 seconds was sufficient to collect 90% of all individuals and species of grassland beetles, with less time required for the true bugs, spiders and planthoppers. The number of samples required to collect 90% of the species was more variable, although in general 55 sub-samples was sufficient for all groups, except the true bugs. Increasing sward height had a negative effect on the capture efficiency of suction sampling. 4. The assemblage structure of beetles, planthoppers and spiders was independent of the sampling method (suction or absolute) used. 5. Synthesis and applications. In contrast to other sampling methods used in grassland habitats (e.g. sweep netting or pitfall trapping), suction sampling is an effective quantitative tool for the measurement of invertebrate diversity and assemblage structure providing sward height is included as a covariate. The effective sampling of beetles, true bugs, planthoppers and spiders altogether requires a minimum sampling effort of 110 sub-samples of duration of 16 seconds. Such sampling intensities can be adjusted depending on the taxa sampled, and we provide information to minimize sampling problems associated with this versatile technique. Suction sampling should remain an important component in the toolbox of experimental techniques used during both experimental and management sampling regimes within agroecosystems, grasslands or other low-lying vegetation types.
Resumo:
In this paper we review the experimental development of agri-environment measures for use on grasslands. Sward structure has been shown to have a strong influence on birds' ability to forage in grasslands, but the effects of food abundance on foraging behaviour are poorly understood and this hinders development of grassland conservation measures. The experiments described have a dual purpose: to investigate the foraging ecology of birds on grasslands and to test candidate management measures. Most of the work featured focuses on increasing invertebrate food resources during the summer by increasing habitat heterogeneity. We also identify important gaps in the habitats provided by existing or experimental measures, where similar dual-purpose experiments are required.
Resumo:
This review covers research linking foraging habitat quality for birds to livestock management in lowland farmland. Based on this research we propose a framework for predicting the value of grazing systems to birds. This predictive framework is needed to guide the development of agri-environment measures to address farmland bird declines in pastoral areas. We show that the exacting requirements of declining granivorous birds pose the greatest challenges, while the needs of soil invertebrate feeding species are more easily met.
Resumo:
Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N + L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N + L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N + L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots. The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N + L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance Of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.
Resumo:
Oil-based formulated conidia sprayed on steel plates and conidia powder (control) of Beauveria bassiana isolate IMI 386243 were stored at temperatures from 10 to 40 degrees C in desiccators over saturated salt solutions providing relative humidities from 32 to 88%, or in hermetic storage at 40 degrees C, and moisture contents in equilibrium with 33 or 77% relative humidity. The negative semi-logarithmic relation (P < 0.005) between conidia longevity (at 40 degrees C) and equilibrium relative humidity did not differ (P > 0.25) between formulated conidia and conidia powder. Despite this, certain saturated salts provided consistently greater longevity (NaCl) and others consistently shorter longevity (KCl) for formulated conidia compared to conidia powder. These results, analysis of previous data, and comparison with hermetic storage, indicate that storage of conidia over saturated salt solutions provides inconsistent responses to environment and so may be problematic for bio-pesticide research. In hermetic storage, oil formulation was not deleterious to longevity and in the more moist environment enhanced survival periods. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Due to their confinement to specific hostplants or restricted habitat types, Auchenorrhyncha have the potential to make suitable biological indicators to measure the quality of chalk grassland under different management practices for nature conservation. The Auchenorrhyncha data from a study designed to identify the factors influencing the invertebrate diversity of chalk grasslands in southern England was used to evaluate the potential use of this group of insects as biological indicators. Between 1998 and 2002 altogether 81 chalk grassland sites were sampled. Vegetation structure and composition were recorded, and Auchenorrhyncha were sampled at each site on three occasions in each of two seasons using a ‘Vortis’ suction sampler. Auchenorrhyncha assemblages were then linked to the different grassland plant communities occurring on chalk soils according to the British National Vegetation Classification (NVC). Altogether 96 Auchenorrhyncha species were recorded during the study. Using data on the frequency and dominance of species, as is commonly done for plant communities, it was possible to identify the preferential and differential species of distinct Auchenorrhyncha assemblages. Significant differences between the Auchenorrhyncha assemblages associated with the various chalk grassland plant communities of the NVC were observed down to a level of sub-communities. We conclude that data on Auchenorrhyncha assemblages can provide valuable information for the setting of conservation management priorities, where data on floristic composition alone may not be sufficient, providing additional information on aspects of vegetation structure and condition.
Resumo:
Soil invertebrate communities are likely to be highly vulnerable to low soil moisture, caused by a reduction in summer rainfall which is predicted for some regions under current climate change scenarios. However, the effects of changes in summer rainfall on soil invertebrate assemblages have rarely been tested experimentally. In this study, samples were taken in 2003 and 2004 from a long-running field experiment, to investigate the impact of 10 years of experimental summer drought and increased summer rainfall manipulations on the soil fauna of a calcareous grassland. Summer drought altered the soil invertebrate assemblage in the autumn, immediately following treatment application, but by the following spring treatment effects were no longer apparent. The two most common root herbivore species responded differently to the summer rainfall manipulations. Larvae of the dominant root-chewing species, Agriotes lineatus, were more numerous under enhanced rainfall in both the spring and autumn. In contrast, abundance of the Coccoidea Lecanopsis formicarum was unaffected by the rainfall manipulations. The responses of root herbivores to an increased incidence of summer droughts are therefore likely to vary, depending on their feeding strategy and life history. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Calcareous grasslands are an important habitat for floral and faunal communities in the UK and Europe. Declines due to changes in management, scrub invasion and agricultural improvement have left much of the remnants of this habitat in a degraded and fragmented state. Grazing, by cattle or sheep, is one of the main management practices used to maintain and improve the floral and faunal quality of calcareous grassland. The long-term impacts of different grazing regimes, however, are poorly understood, particularly in terms of the invertebrate communities. This study contrasted the impacts of recently introduced and long-term sheep or cattle grazing on beetle communities present on one of the largest areas of calcareous grassland in Europe, the Salisbury Plain military training Area, UK. No effects of grazing management on beetle abundance, species. richness or evenness were found, but plant diversity and overall percentage cover of grasses did influence beetle diversity. Proportions of the total number of individuals and overall species richness within beetle guilds (predatory, phytophagous, flower/seed feeders, root feeders and foliage feeders) were strongly influenced by both the duration and type of grazing animal. At the species level, beetle community structure showed significant differences between ungrazed, long-term cattle and long-term sheep grazing treatments. Changes in plant community structure were found to influence beetle community structure. The significance of these results is discussed in terms of the long-term impacts of grazing on beetle community structure, and the benefits of different grazing regimes for the conservation management of calcareous grasslands. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The contribution of four types of secondary woodlands to Scottish invertebrate biodiversity was investigated for coniferous plantation forestry, riparian ash-alder woodlands, early successional deciduous woodlands and climax deciduous woodlands. Considerable variation in the type and intensity of management within these four woodland types existed. Adult Diptera from 21 families, representing diverse trophic and ecological guilds, were sampled from 31 woodlands in the Aberdeenshire region of northeast Scotland, between June and August 2001. Environmental differences between woodlands were recorded at each site using environmental parameters such as pH and organic matter content, vegetation characteristics, including percentage canopy cover and dominant field layer plant species. Multivariate ordination techniques detected significant responses in the Dipteran communities to soil type, organic matter content, soil pH, field layer plant species richness, dominant field layer plant species and percentage cover of Pteridium aquilinum. Responses in terms of Dipteran abundance, species richness, diversity and evenness were observed to soil type and dominant species of the field layer vegetation. The role of woodland type and management in diversifying Diptera communities is discussed with a view to maintain and possibly enhance Dipteran and other invertebrate communities in Scottish secondary woodlands. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This study investigates the function of non-cropped field margins in arable farming systems for enhancing the biodiversity value of beetle communities. Three different sown seed mixtures were used to establish field margins, a Countryside Stewardship mix, a fine grass and forbs mix and a tussock grass and forbs mix. The structure of beetle communities in the first full year of establishment was found to show no difference between the tussock grass and Countryside Stewardship margins. However, both differed from the fine grass margins, which supported lower overall abundance and species richness of beetles. This was attributed to small-scale architectural differences between species of fine and tussock grasses, rather than differences in plant composition. Body size distributions of beetles showed distinct similarities between the Countryside Stewardship and tussock margins. A greater abundance of large beetles was found in fine grass margins, although in all cases these body size distributions were attributed to a small number of species or a taxonomically distinct group. All three margin types included beetle species of conservation value. The importance of these results was discussed in the context of the value of these seed mixtures for invertebrate conversation. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The myxozoan, Tetracapsuloides bryosalmonae, exploits freshwater bryozoans as definitive hosts, occurring as cryptic stages in bryozoan colonies during covert infections and as spore-forming sacs during overt infections. Spores released from sacs are infective to salmonid fish, causing the devastating Proliferative Kidney Disease (PKD). We undertook laboratory studies using mesocosm systems running at 10, 14 and 20 degrees C to determine how infection by T bryosalmonae and water temperature influence fitness of one of its most important bryozoan hosts, Fredericella sultana, over a period of 4 weeks. The effects of infection were context-dependent and often undetectable. Covert infections appear to pose very low energetic costs. Thus, we found that growth of covertly infected F. sultana colonies was similar to that of uninfected colonies regardless of temperature, as was the propensity to produce dormant resting stages (statoblasts). Production of statoblasts, however, was associated with decreased growth. Overt infections imposed greater effects on correlates of host fitness by: (i) reducing growth rates at the two higher temperatures: (ii) increasing mortality rates at the highest temperature: (iii) inhibiting statoblast production. Our results indicate that parasitism should have a relatively small effect on host fitness in the field as the negative effects of infection were mainly expressed in environmentally extreme conditions (20 degrees C for 4 weeks). The generally low virulence of T. bryosalmonae is similar to that recently demonstrated for another myxozoan endoparasite of freshwater bryozoans. The unique opportunity for extensive vertical transmission in these colonial invertebrate hosts couples the reproductive interests of host and parasite and may well give rise to the low virulence that characterises these systems. Our study implies that climate change can be expected to exacerbate PKD outbreaks and increase the geographic range of PKD as a result of the combined responses of T. bryosalmonae and its bryozoan hosts to higher temperatures. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
The introduction of Registration, Evaluation and Authorisation of Chemicals (REACH), requires companies to register and risk assess all substances produced or imported in volumes of >1 tonne per year. Extrapolation methods which use existing data for estimating the effects of chemicals are attractive to industry, and comparative data are therefore increasingly in demand. Data on natural toxic chemicals could be used for extrapolation methods Such as read-across. To test this hypothesis, the toxicity of natural chemicals and their synthetic analogues were compared using standardised toxicity tests. Two chemical pairs: the napthoquinones, juglone (natural) and 1,4-naphthoquinone (synthetic); and anthraquinones, emodin (natural) and quinizarin (synthetic) were chosen, and their comparative effects on the survival and reproduction of collembolans, earthworms, enchytraeids and predatory mites were assessed. Differences in sensitivity between the species were observed with the predatory mite (Hypoaspis aculeifer) showing the least sensitivity. Within the chemical pairs, toxicity to lethal and sub-lethal endpoints was very similar for the four invertebrate species. The exception was earthworm reproduction, which showed differential sensitivity to the chemicals in both naphthoquinone and anthraquinone pairs. Differences in toxicity identified in the present study may be related to degree of exposure and/or subtle differences in the mode of toxic action for the chemicals and species tested. It may be possible to predict differences by identifying functional groups which infer increased or decreased toxicity in one or other chemical. The development of such techniques would enable the use of read-across from natural to synthetic chemicals for a wider group of compounds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. Here we characterize all four gene families in the dogfish Seyliorhinus canicula, a member of the cartilaginous fish lineage that diverged before the radiation of osteichthyan vertebrates. We identify two FoxC genes, two FoxF genes, and single FoxQ1 and FoxL1 genes, demonstrating cluster duplication preceded the radiation of gnathostomes. The expression of all six genes was analyzed by in situ hybridization. The results show conserved expression of FoxL1, FoxF, and FoxC genes in different compartments of the mesoderm and of FoxQ1 in pharyngeal endoderm and its derivatives, confirming these as ancient sites of Fox gene expression, and also illustrate multiple cases of lineage-specific expression domains. Comparison to invertebrate chordates shows that the majority of conserved vertebrate expression domains mark tissues that are part of the primitive chordate body plan.