17 resultados para INJECTION CALIBRATION SYSTEM
Resumo:
Earth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate–carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes.
Resumo:
Accident and Emergency (A&E) units provide a route for patients requiring urgent admission to acute hospitals. Public concern over long waiting times for admissions motivated this study, whose aim is to explore the factors which contribute to such delays. The paper discusses the formulation and calibration of a system dynamics model of the interaction of demand pattern, A&E resource deployment, other hospital processes and bed numbers; and the outputs of policy analysis runs of the model which vary a number of the key parameters. Two significant findings have policy implications. One is that while some delays to patients are unavoidable, reductions can be achieved by selective augmentation of resources within, and relating to, the A&E unit. The second is that reductions in bed numbers do not increase waiting times for emergency admissions, their effect instead being to increase sharply the number of cancellations of admissions for elective surgery. This suggests that basing A&E policy solely on any single criterion will merely succeed in transferring the effects of a resource deficit to a different patient group.