68 resultados para History of Roundtable
Resumo:
The evolutionary history of gains and losses of vegetative reproductive propagules (soredia) in Porpidia s.l., a group of lichen-forming ascomycetes, was clarified using Bayesian Markov chain Monte Carlo (MCMC) approaches to monophyly tests and a combined MCMC and maximum likelihood approach to ancestral character state reconstructions. The MCMC framework provided confidence estimates for the reconstructions of relationships and ancestral character states, which formed the basis for tests of evolutionary hypotheses. Monophyly tests rejected all hypotheses that predicted any clustering of reproductive modes in extant taxa. In addition, a nearest-neighbor statistic could not reject the hypothesis that the vegetative reproductive mode is randomly distributed throughout the group. These results show that transitions between presence and absence of the vegetative reproductive mode within Porpidia s.l. occurred several times and independently of each other. Likelihood reconstructions of ancestral character states at selected nodes suggest that - contrary to previous thought - the ancestor to Porpidia s.l. already possessed the vegetative reproductive mode. Furthermore, transition rates are reconstructed asymmetrically with the vegetative reproductive mode being gained at a much lower rate than it is lost. A cautious note has to be added, because a simulation study showed that the ancestral character state reconstructions were highly dependent on taxon sampling. However, our central conclusions, particularly the higher rate of change from vegetative reproductive mode present to absent than vice versa within Porpidia s.l., were found to be broadly independent of taxon sampling. [Ancestral character state reconstructions; Ascomycota, Bayesian inference; hypothesis testing; likelihood; MCMC; Porpidia; reproductive systems]
Resumo:
In this Drug points article the author describes a case of osteoarthritic pain where prescribing diclofenac resulted in gastrointestinal ulceration and comments on the issues it raises.
Resumo:
Changes in atmospheric temperature have a particular importance in climate research because climate models consistently predict a distinctive vertical profile of trends. With increasing greenhouse gas concentrations, the surface and troposphere are consistently projected to warm, with an enhancement of that warming in the tropical upper troposphere. Hence, attempts to detect this distinct ‘fingerprint’ have been a focus for observational studies. The topic acquired heightened importance following the 1990 publication of an analysis of satellite data which challenged the reality of the projected tropospheric warming. This review documents the evolution over the last four decades of understanding of tropospheric temperature trends and their likely causes. Particular focus is given to the difficulty of producing homogenized datasets, with which to derive trends, from both radiosonde and satellite observing systems, because of the many systematic changes over time. The value of multiple independent analyses is demonstrated. Paralleling developments in observational datasets, increased computer power and improved understanding of climate forcing mechanisms have led to refined estimates of temperature trends from a wide range of climate models and a better understanding of internal variability. It is concluded that there is no reasonable evidence of a fundamental disagreement between tropospheric temperature trends from models and observations when uncertainties in both are treated comprehensively