57 resultados para Health and safety
Resumo:
Existing data on animal health and welfare in organic livestock production systems in the European Community countries are reviewed in the light of the demands and challenges of the recently implemented EU regulation on organic livestock production. The main conclusions and recommendations of a three-year networking project on organic livestock production are summarised and the future challenges to organic livestock production in terms of welfare and health management are discussed. The authors conclude that, whilst the available data are limited and the implementation of the EC regulation is relatively recent, there is little evidence to suggest that organic livestock management causes major threats to animal health and welfare in comparison with conventional systems. There are, however, some well-identified areas, like parasite control and balanced ration formulation, where efforts are needed to find solutions that meet with organic standard requirements and guarantee high levels of health and welfare. It is suggested that, whilst organic standards offer an implicit framework for animal health and welfare management, there is a need to solve apparent conflicts between the organic farming objectives in regard to environment, public health, farmer income and animal health and welfare. The key challenges for the future of organic livestock production in Europe are related to the feasibility of implementing improved husbandry inputs and the development of evidence-based decision support systems for health and feeding management.
Resumo:
Flavonoid extracts derived from plant foods have been shown to benefit certain types of fluid retention. However, no studies have investigated these compounds for use in premenstrual fluid retention, a complaint common among women with otherwise normal menstrual cycles. Therefore, we conducted a double-blind, placebo-controlled, pilot study into the effect of a daily flavonoid extract (Colladeen(R), 320 mg oligomeric procyanidins) on premenstrual fluid retention. Fluid retention was assessed at baseline and throughout 4 menstrual cycles of the intervention using validated questionnaires. Leg girth was also measured at baseline and at the end of the study. Thirty subjects completed the study (n = 18 active treatment; n = 12 placebo). Although no significant changes in leg girth measurements were noted, there was a significant improvement in subjective "leg health" scores after flavonoid treatment compared to placebo (p = 0.013). Furthermore, this was accompanied by an improvement in reported premenstrual fluid retention nearing significance (p = 0.066). We conclude that flavonoids supplements may provide a new therapeutic direction to counter premenstrual fluid retention and improve leg health. A larger study is now warranted.
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
Coronary heart disease (CHD) is the leading cause of mortality in Western societies, affecting about one third of the population before their seventieth year. Over the past decades modifiable risk factors of CHD have been identified, including smoking and diet. These factors when altered can have a significant impact on an individuals' risk of developing CHD, their overall health and quality of life. There is strong evidence suggesting that dietary intake of plant foods rich in fibre and polyphenolic compounds, effectively lowers the risk of developing CHD. However, the efficacy of these foods often appears to be greater than the sum of their recognised biologically active parts. Here we discuss the hypothesis that beneficial metabolic and vascular effects of dietary fibre and plant polyphenols are due to an up regulation of the colon-systemic metabolic axis by these compounds. Fibres and many polyphenols are converted into biologically active compounds by the colonic microbiota. This microbiota imparts great metabolic versatility and dynamism, with many of their reductive or hydrolytic activities appearing complementary to oxidative or conjugative human metabolism. Understanding these microbial activities is central to determining the role of different dietary components in preventing or beneficially impacting on the impaired lipid metabolism and vascular dysfunction that typifies CHD and type 11 diabetes. This approach lays the foundation for rational selection of health promoting foods, rational target driven design of functional foods, and provides an essential thus-far, overlooked, dynamic to our understanding of how foods recognised as "healthy" impact on the human metabonome.
Resumo:
Background The gut and immune system form a complex integrated structure that has evolved to provide effective digestion and defence against ingested toxins and pathogenic bacteria. However, great variation exists in what is considered normal healthy gut and immune function. Thus, whilst it is possible to measure many aspects of digestion and immunity, it is more difficult to interpret the benefits to individuals of variation within what is considered to be a normal range. Nevertheless, it is important to set standards for optimal function for use both by the consumer, industry and those concerned with the public health. The digestive tract is most frequently the object of functional and health claims and a large market already exists for gut-functional foods worldwide. Aim To define normal function of the gut and immune system and describe available methods of measuring it. Results We have defined normal bowel habit and transit time, identified their role as risk factors for disease and how they may be measured. Similarly, we have tried to define what is a healthy gut flora in terms of the dominant genera and their metabolism and listed the many, varied and novel methods for determining these parameters. It has proved less easy to provide boundaries for what constitutes optimal or improved gastric emptying, gut motility, nutrient and water absorption and the function of organs such as the liver, gallbladder and pancreas. The many tests of these functions are described. We have discussed gastrointestinal well being. Sensations arising from the gut can be both pleasant and unpleasant. However, the characteristics of well being are ill defined and merge imperceptibly from acceptable to unacceptable, a state that is subjective. Nevertheless, we feel this is an important area for future work and method development. The immune system is even more difficult to make quantitative judgements about. When it is defective, then clinical problems ensure, but this is an uncommon state. The innate and adaptive immune systems work synergistically together and comprise many cellular and humoral factors. The adaptive system is extremely sophisticated and between the two arms of immunity there is great redundancy, which provides robust defences. New aspects of immune function are discovered regularly. It is not clear whether immune function can be "improved". Measuring aspects of immune function is possible but there is no one test that will define either the status or functional capacity of the immune system. Human studies are often limited by the ability to sample only blood or secretions such as saliva but it should be remembered that only 2% of lymphocytes circulate at any given time, which limits interpretation of data. We recommend assessing the functional capacity of the immune system by: measuring specific cell functions ex vivo, measuring in vivo responses to challenge, e. g. change in antibody in blood or response to antigens, determining the incidence and severity of infection in target populations during naturally occurring episodes or in response to attenuated pathogens.