18 resultados para HR2 haplotype


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Autism spectrum conditions (ASC) are associated with deficits in social interaction and communication, alongside repetitive, restricted, and stereotyped behavior. ASC is highly heritable. The gamma-aminobutyric acid (GABA)-ergic system has been associated consistently with atypicalities in autism, in both genetic association and expression studies. A key component of the GABA-ergic system is encoded by the GABRB3 gene, which has been previously implicated both in ASC and in individual differences in empathy. METHODS: In this study, 45 genotyped single nucleotide polymorphisms (SNPs) within GABRB3 were tested for association with Asperger syndrome (AS), and related quantitative traits measured through the following tests: the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ), the Systemizing Quotient-Revised (SQ-R), the Embedded Figures Test (EFT), the Reading the Mind in the Eyes Test (RMET), and the Mental Rotation Test (MRT). Two-loci, three-loci, four-loci haplotype analyses, and one seven-loci haplotype analysis were also performed in the AS case--control sample. RESULTS: Three SNPs (rs7180158, rs7165604, rs12593579) were significantly associated with AS, and two SNPs (rs9806546, rs11636966) were significantly associated with EQ. Two SNP-SNP pairs, rs12438141-rs1035751 and rs12438141-rs7179514, showed significant association with variation in the EFT scores. One SNP-SNP pair, rs7174437-rs1863455, was significantly associated with variation in the MRT scores. Additionally, a few haplotypes, including a 19 kb genomic region that formed a linkage disequilibrium (LD) block in our sample and contained several nominally significant SNPs, were found to be significantly associated with AS. CONCLUSION: The current study confirms the role of GABRB3 as an important candidate gene in both ASC and normative variation in related endophenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of crop specimens archived in herbaria and old seed collections represent valuable resources for the analysis of plant genetic diversity and crop domestication. The ability to extract ancient DNA (aDNA) from such samples has recently allowed molecular genetic investigations to be undertaken in ancient materials. While analyses of aDNA initially focused on the use of markers which occur in multiple copies such as the internal transcribed spacer region (ITS) within ribosomal DNA and those requiring amplification of short DNA regions of variable length such as simple sequence repeats (SSRs), emphasis is now moving towards the genotyping of single nucleotide polymorphisms (SNPs), traditionally undertaken in aDNA by Sanger sequencing. Here, using a panel of barley aDNA samples previously surveyed by Sanger sequencing for putative causative SNPs within the flowering-time gene PPD-H1, we assess the utility of the Kompetitive Allele Specific PCR (KASP) genotyping platform for aDNA analysis. We find KASP to out-perform Sanger sequencing in the genotyping of aDNA samples (78% versus 61% success, respectively), as well as being robust to contamination. The small template size (≥46 bp) and one-step, closed-tube amplification/genotyping process make this platform ideally suited to the genotypic analysis of aDNA, a process which is often hampered by template DNA degradation and sample cross-contamination. Such attributes, as well as its flexibility of use and relatively low cost, make KASP particularly relevant to the genetic analysis of aDNA samples. Furthermore, KASP provides a common platform for the genotyping and analysis of corresponding SNPs in ancient, landrace and modern plant materials. The extended haplotype analysis of PPD-H1 undertaken here (allelic variation at which is thought to be important for the spread of domestication and local adaptation) provides further resolution to the previously identified geographic cline of flowering-time allele distribution, illustrating how KASP can be used to aid genetic analyses of aDNA from plant species. We further demonstrate the utility of KASP by genotyping ten additional genetic markers diagnostic for morphological traits in barley, shedding light on the phenotypic traits, alleles and allele combinations present in these unviable ancient specimens, as well as their geographic distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Autism Spectrum Conditions (ASC) are a group of neurodevelopmental conditions characterized by impairments in communication and social interaction, alongside unusually repetitive behaviors and narrow interests. ASC are highly heritable and have complex patterns of inheritance where multiple genes are involved, alongside environmental and epigenetic factors. Asperger Syndrome (AS) is a subgroup of these conditions, where there is no history of language or cognitive delay. Animal models suggest a role for oxytocin (OXT) and oxytocin receptor (OXTR) genes in social-emotional behaviors, and several studies indicate that the oxytocin/oxytocin receptor system is altered in individuals with ASC. Previous studies have reported associations between genetic variations in the OXTR gene and ASC. Methods The present study tested for an association between nine single nucleotide polymorphisms (SNPs) in the OXTR gene and AS in 530 individuals of Caucasian origin, using SNP association test and haplotype analysis. Results There was a significant association between rs2268493 in OXTR and AS. Multiple haplotypes that include this SNP (rs2268493-rs2254298, rs2268490-rs2268493-rs2254298, rs2268493-rs2254298-rs53576, rs237885-rs2268490-rs2268493-rs2254298, rs2268490-rs2268493-rs2254298-rs53576) were also associated with AS. rs2268493 has been previously associated with ASC and putatively alters several transcription factor-binding sites and regulates chromatin states, either directly or through other variants in linkage disequilibrium (LD). Conclusions This study reports a significant association of the sequence variant rs2268493 in the OXTR gene and associated haplotypes with AS.