28 resultados para HERBIVORE DETERRENCE
Resumo:
Maculalactone A is the most abundant secondary metabolite in Kyrtuthrix maculans, a marine cyanobacterium found in the mid-high shore of moderately exposed to sheltered rocky shores in Hong Kong and South East Asia. This species appears to survive as pure colonies forming distinct black zones on the rock. Maculalactone A may provide K. maculans with a chemical defense against several marine organisms, including the common grazer, Chlorostoma argyrostoma and settlement by larvae of the barnacles, Tetraclita japonica, Balanus amphitrite and Ibla cumingii. The natural concentration of maculalactone A varied with season and also with tidal height on the shore and although a strong positive linear correlation was observed between maculalactone A concentration and herbivore grazing pressure, manipulative experiments demonstrated that grazing pressure was not directly responsible for inducing the biosynthesis of this metabolite. The potential of maculalactone A as a natural marine anti-fouling agent (i.e. as an alternative to environmentally-damaging copper- and tin-based anti-fouling paints) was investigated after achieving a gram-scale synthesis of this compound. Preliminary field trials with anti-fouling paints which contained synthetic maculalactone A as the active principle have confirmed that this compound seems to have a specific activity against molluscan settlers.
Resumo:
Grasslands restoration is a key management tool contributing to the long-term maintenance of insect populations, providing functional connectivity and mitigating against extinction debt across landscapes. As knowledge of grassland insect communities is limited, the lag between the initiation of restoration and the ability of these new habitats to contribute to such processes is unclear. Using ten data sets, ranging from 3 to 14 years, we investigate the lag between restoration and the establishment of phytophagous beetle assemblages typical of species rich grasslands. We used traits and ecological characteristics to determine factors limiting beetle colonisation, and also considered how food-web structure changed during restoration. For sites where seed addition of host-plants occurred the success in replicating beetle assemblages increased over time following a negative exponential function. Extrapolation beyond the existing data set tentatively suggested that success would plateau after 20 years, representing a c. 60% increase in assemblage similarity to target grasslands. In the absence of seed addition, similarity to the target grasslands showed no increase over time. Where seed addition was used the connectance of plant-herbivore food webs decreased over time, approaching values typical of species rich grasslands after c. 7 years. This trend was, however, dependent on the inclusion of a single site containing data in excess of 6 years of restoration management. Beetles not capable of flight, those showing high degrees of host-plant specialisation and species feeding on nationally rare host plants take between 1 and 3 years longer to colonise. Successful grassland restoration is underpinned by the establishment of host-plants, although individual species traits compound the effects of poor host-plant establishment to slow colonisation. The use of pro-active grassland restoration to mitigate against future environmental change should account for lag periods in excess of 10 years if the value of these habitats is to be fully realised.
Resumo:
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.
Resumo:
Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant-ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn-dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn-dwelling ant species.
Resumo:
A discussion of nuclear guarantees as means of deterrence and security projection in Europe, and also a countermeasure against nuclear proliferation. My contribution to this jointly authored book is contained mainly, but not exclusively, under the above section.
Resumo:
European writers on strategy (in French: strategistes, as opposed to practitioners, stratèges) developed their thoughts on the best strategies and postures of nuclear deterrence against their own beliefs in the identities of their own countries - were they seen as "Europesn" or as "nation-states" who must under no condition surrender their sovereignty?
Resumo:
In a proof-of-concept study, Britton et al. (2008) demonstrated that the isotopic composition of halophytic plants can be traced in the skeletal tissues of their animal consumers. Here we apply the method to domestic herbivore remains (n = 303) from nine archaeological sites in or near the Flemish coastal plain (Belgium), where, prior to embankments, salt-marshes offered extensive pasture grounds for domestic herbivores. The sites span a period of ∼1500 years (Roman to late medieval period), during which the coastal landscape was progressively transformed from little managed wetlands to a fully embanked polder area. The bulk collagen data show variations between sites and over time, which are consistent with this historical framework and are interpreted as reflecting environmental change and differences in animal management in the coastal plain throughout the late Holocene. The study demonstrates the immense value of faunal stable isotope analysis for characterising coastal husbandry strategies beyond the means of traditional zooarchaeological techniques.
Resumo:
In order to investigate the potential role of vegetation changes in megafaunal extinctions during the later part of the last glacial stage and early Holocene (42–10 ka BP), the palaeovegetation of northern Eurasia and Alaska was simulated using the LPJ-GUESS dynamic vegetation model. Palaeoclimatic driving data were derived from simulations made for 22 time slices using the Hadley Centre Unified Model. Modelled annual net primary productivity (aNPP) of a series of plant functional types (PFTs) is mapped for selected time slices and summarised for major geographical regions for all time slices. Strong canonical correlations are demonstrated between model outputs and pollen data compiled for the same period and region. Simulated aNPP values, especially for tree PFTs and for a mesophilous herb PFT, provide evidence of the structure and productivity of last glacial vegetation. The mesophilous herb PFT aNPP is higher in many areas during the glacial than at present or during the early Holocene. Glacial stage vegetation, whilst open and largely treeless in much of Europe, thus had a higher capacity to support large vertebrate herbivore populations than did early Holocene vegetation. A marked and rapid decrease in aNPP of mesophilous herbs began shortly after the Last Glacial Maximum, especially in western Eurasia. This is likely implicated in extinction of several large herbivorous mammals during the latter part of the glacial stage and the transition to the Holocene.
Resumo:
This paper reports part of a qualitative study into evolving practice in the implementation of the Dispute Adjudication Board (DAB) construction dispute resolution technique, a variant of the Dispute Review Board (DRB) concept used in the US and Canada. Data was collected through a focus group interview of 20 highly experienced dispute resolution practitioners from engineering and the law. The group was assembled from members of FIDIC-NET with direct experience of project DABs. The part reported here concerns practice and procedure for establishing DABs. The main findings are that: constitution of the DABs is often delayed because of either project owners' ignorance of the DAB process or deterrence by the cost of the DABs; such owners also tend to insist on appointing DAB members from local engineers and lawyers without sufficient understanding of the DAB process; rates of remuneration of DAB members vary widely; the training provision for DAB membership and advocacy skills is inadequate; the process of selecting candidates for DAB membership and negotiating the tripartite agreement between each member and the contractual parties needs to be navigated with great care to avoid raising ethical problems. The research contribution is threefold. First, it highlights the importance of realistic fees for DAB members within a standard framework in achieving timely establishment of a board that works well as a team. Second, it illustrates the use of qualitative focus group interview to study the impact of new contract terms from multiple stakeholder perspectives. Finally, it identifies areas where further research is needed.
Resumo:
Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment
Resumo:
1 Insects using olfactory stimuli to forage for prey/hosts are proposed to encounter a ‘reliability–detectability problem’, where the usability of a stimulus depends on its reliability as an indicator of herbivore presence and its detectability. 2 We investigated this theory using the responses of female seven-spot ladybirds Coccinella septempunctata (Coleoptera: Coccinellidae) to plant headspace chemicals collected from the peach-potato aphid Myzus persicae and four commercially available Brassica cultivars; Brassica rapa L. cultivar ‘turnip purple top’, Brassica juncea L. cultivar ‘red giant mustard’, Brassica napus L. cultivar ‘Apex’, Brassica napus L. cultivar ‘Courage’ and Arabidopsis thaliana. For each cultivar/species, responses to plants that were undamaged, previously infested by M. persicae and infested with M. persicae, were investigated using dual-choice Petri dish bioassays and circular arenas. 3 There was no evidence that ladybirds responded to headspace chemicals from aphids alone. Ladybirds significantly preferred headspace chemicals from B. napus cv. Apex that were undamaged compared with those from plants infested with aphids. For the other four species/cultivars, there was a consistent trend of the predators being recorded more often in the half of the Petri dish containing plant headspace chemicals from previously damaged and infested plants compared with those from undamaged ones. Furthermore, the mean distance ladybirds walked to reach aphid-infested A. thaliana was significantly shorter than to reach undamaged plants. These results suggest that aphid-induced plant chemicals could act as an arrestment or possibly an attractant stimulus to C. septempunctata. However, it is also possible that C. septempunctata could have been responding to aphid products, such as honeydew, transferred to the previously damaged and infested plants. 4 The results provide evidence to support the ‘reliability–detectability’ theory and suggest that the effectiveness of C. septempunctata as a natural enemy of aphids may be strongly affected by which species and cultivar of Brassica are being grown.
Resumo:
Interest in sustainable farming methods that rely on alternatives to conventional synthetic fertilizers and pesticides is increasing. Sustainable farming methods often utilize natural populations of predatory and parasitic species to control populations of herbivores, which may be potential pest species. We investigated the effects of several types of fertilizer, including those typical of sustainable and conventional farming systems, on the interaction between a herbivore and parasitoid. The effects of fertilizer type on percentage parasitism, parasitoid performance, parasitoid attack behaviour and responses to plant volatiles were examined using a model Brassica system, consisting of Brassica oleracea var capitata, Plutella xylostella (Lepidoptera) larvae and Cotesia vestalis (parasitoid). Percentage parasitism was greatest for P. xylostella larvae feeding on plants that had received either a synthetic ammonium nitrate fertilizer or were unfertilized, in comparison to those receiving a composite fertilizer containing hoof and horn. Parasitism was intermediate on plants fertilized with an organically produced animal manure. Male parasitoid tibia length showed the same pattern as percentage parasitism, an indication that offspring performance was maximized on the treatments preferred by female parasitoids for oviposition. Percentage parasitism and parasitoid size were not correlated with foliar nitrogen concentration. The parasitoids did not discriminate between hosts feeding on plants in the four fertilizer treatments in parasitoid behaviour assays, but showed a preference for unfertilized plants in olfactometer experiments. The percentage parasitism and tibia length results provide support for the preference–performance hypothesis
Resumo:
Background and Aims Despite recent recognition that (1) plant–herbivore interactions during the establishment phase, (2) ontogenetic shifts in resource allocation and (3) herbivore response to plant volatile release are each pivotal to a comprehensive understanding of plant defence, no study has examined how herbivore olfactory response varies during seedling ontogeny. Methods Using a Y-tube olfactometer we examined snail (Helix aspersa) olfactory response to pellets derived from macerated Plantago lanceolata plants harvested at 1, 2, 3, 4, 5, 6 and 8 weeks of age to test the hypothesis that olfactory selection of plants by a generalist herbivore varies with plant age. Plant volatiles were collected for 10 min using solid-phase microextraction technique on 1- and 8-week-old P. lanceolata pellets and analysed by gas chromatography coupled with a mass spectrometer. Key Results Selection of P. lanceolata was strongly negatively correlated with increasing age; pellets derived from 1-week-old seedlings were three times more likely to be selected as those from 8-week-old plants. Comparison of plant selection experiments with plant volatile profiles from GC/MS suggests that patterns of olfactory selection may be linked to ontogenetic shifts in concentrations of green leaf volatiles and ethanol (and its hydrolysis derivatives). Conclusions Although confirmatory of predictions made by contemporary plant defence theory, this is the first study to elucidate a link between seedling age and olfactory selection by herbivores. As a consequence, this study provides a new perspective on the ontogenetic expression of seedling defence, and the role of seedling herbivores, particularly terrestrial molluscs, as selective agents in temperate plant communities.