54 resultados para Gregory, Kenneth J


Relevância:

10.00% 10.00%

Publicador:

Resumo:

FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results are presented from a new web application called OceanDIVA - Ocean Data Intercomparison and Visualization Application. This tool reads hydrographic profiles and ocean model output and presents the data on either depth levels or isotherms for viewing in Google Earth, or as probability density functions (PDFs) of regional model-data misfits. As part of the CLIVAR Global Synthesis and Observations Panel, an intercomparison of water mass properties of various ocean syntheses has been undertaken using OceanDIVA. Analysis of model-data misfits reveals significant differences between the water mass properties of the syntheses, such as the ability to capture mode water properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Atlantic meridional overturning circulation (AMOC) is an important component of the climate system. Models indicate that the AMOC can be perturbed by freshwater forcing in the North Atlantic. Using an ocean-atmosphere general circulation model, we investigate the dependence of such a perturbation of the AMOC, and the consequent climate change, on the region of freshwater forcing. A wide range of changes in AMOC strength is found after 100 years of freshwater forcing. The largest changes in AMOC strength occur when the regions of deepwater formation in the model are forced directly, although reductions in deepwater formation in one area may be compensated by enhanced formation elsewhere. North Atlantic average surface air temperatures correlate linearly with the AMOC decline, but warming may occur in localised regions, notably over Greenland and where deepwater formation is enhanced. This brings into question the representativeness of temperature changes inferred from Greenland ice-core records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances made over the past decade in structure determination from powder diffraction data are reviewed with particular emphasis on algorithmic developments and the successes and limitations of the technique. While global optimization methods have been successful in the solution of molecular crystal structures, new methods are required to make the solution of inorganic crystal structures more routine. The use of complementary techniques such as NMR to assist structure solution is discussed and the potential for the combined use of X-ray and neutron diffraction data for structure verification is explored. Structures that have proved difficult to solve from powder diffraction data are reviewed and the limitations of structure determination from powder diffraction data are discussed. Furthermore, the prospects of solving small protein crystal structures over the next decade are assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of 16 isomolecular salts (3-XpyH)(2)[MX'(4)] (3-XpyH=3-halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X'=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X-ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non-covalent interactions: N-H center dot center dot center dot X'-M hydrogen bonds, C-X center dot center dot center dot X'-M halogen bonds and pi-pi stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C-X center dot center dot center dot X'-M halogen bonds, whereas an analogous change of the inorganic halogen (X') weakens both halogen bonds and N-H center dot center dot center dot X'-M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C-F center dot center dot center dot X'-M) halogen bonds are absent. The structure is directed by N-H center dot center dot center dot X'-M hydrogen bonds and pi-stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X'), long (weak) C-X center dot center dot center dot X'-M interactions are observed with type I halogen-halogen interaction geometries (C-X center dot center dot center dot X' approximate to X center dot center dot center dot X'-M approximate to 155 degrees), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X'), stronger halogen bonds are formed with a type II halogen-halogen interaction geometry (C-X center dot center dot center dot X' approximate to 180 degrees; X center dot center dot center dot X'-M approximate to 110 degrees) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can therefore be achieved by distributing individual DASH runs over a network of computers. The GDASH program achieves this by packaging DASH in a form that enables it to run under the Univa UD Grid MP system, which harnesses networks of existing computing resources to perform calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Modest increases in speed of execution can therefore be achieved by executing individual DASH runs on the individual cores of CPUs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have applied a combination of spectroscopic and diffraction methods to study the adduct formed between squaric acid and bypridine, which has been postulated to exhibit proton transfer associated with a single-crystal to single-crystal phase transition at ca. 450 K. A combination of X-ray single-crystal and very-high flux powder neutron diffraction data confirmed that a proton does transfer from the acid to the base in the high-temperature form. Powder X-ray diffraction measurements demonstrated that the transition was reversible but that a significant kinetic energy barrier must be overcome to revert to the original structure. Computational modeling is consistent with these results. Modeling also revealed that, while the proton transfer event would be strongly discouraged in the gas phase, it occurs in the solid state due to the increase in charge state of the molecular ions and their arrangement inside the lattice. The color change is attributed to a narrowing of the squaric acid to bipyridine charge-transfer energy gap. Finally, evidence for the possible existence of two further phases at high pressure is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The product of the Asinger reaction between elemental sulfur, n-butylamine and acetophenone is 8-(n-butylaminophenylmethyliden)-1,2,3,4,5,6,7-heptathiocane which contains a CS7 ring. A combination of infrared, Raman and inelastic neutron scattering spectroscopies with periodic density functional theory calculations is used to provide a complete assignment of the vibrational spectra of this unusual species. The similarity between the Raman spectra of the compound and that of elemental sulfur is particularly striking. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean-atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10-20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean's thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.