123 resultados para Grasses crop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification and characterization of differential gene expression from tissues subjected to stress has gained much attention in plant research. The recognition of elements involved in the response to a particular stress enhances the possibility of promoting crop improvement through direct genetic modification. However, the performance of some of the 'first generation' of transgenic plants with the incorporation of a single gene has not always been as expected. These results have stimulated the development of new transgenic constructions introducing more than one gene and capable of modifying complex pathways. Several techniques are available to conduct the analysis of gene regulation, with such information providing the basis for novel constructs specifically designed to modify metabolism. This review deals with techniques that allow the identification and characterization of differentially-expressed genes and the use of molecular pathway information to produce transgenic plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic crops are now grown commercially on several million hectares, principally in North America. To date, the predominant crops are maize (corn), soybean, cotton, and potatoes. In addition, there have been field trials of transgenics from at least 52 species including all the major field crops, vegetables, and several herbaceous and woody species. This review summarizes recent data relating to such trials, particularly in terms of the trends away from simple, single gene traits such as herbicide and insect resistance towards more complex agronomic traits such as growth rate and increased photosynthetic efficiency. Much of the recent information is derived from inspection of patent databases, a useful source of information on commercial priorities. The review also discusses the time scale for the introduction of these transgenes into breeding populations and their eventual release as new varieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give fanners the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables'on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant' policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (λ, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966–1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of λ near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two free air CO2 enrichment (FACE) meta-analyses have shown increases in yield of between 0 and 73% for C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the parameterisation of crop growth and development. We present a novel perturbed-parameter method of crop model simulation, which uses some constraints from observations, that does this. The model used is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the general large-area model for annual crops (GLAM). The conclusions are of relevance to C3 crops in general. The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference in mean percentage increase between well-watered and water-stressed simulations was 6.8. These results were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., Bell, M.J., 1995. A peanut simulation model. I. Model development and testing. Agron. J. 87, 1085-1093]. The relationship between CO2 and water stress in the experiments and in the models was examined. From a physiological perspective, water-stressed crops are expected to show greater CO2 stimulation than well-watered crops. This expectation has been cited in literature. However, this result is not seen consistently in either the FACE studies or in the crop models. In contrast, leaf-level models of assimilation do consistently show this result. An analysis of the evidence from these models and from the data suggests that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the sign and magnitude of the interaction between CO2 and water stress. We conclude from our study that the statement that 'water-stressed crops show greater CO2 stimulation than well-watered crops' cannot be held to be universally true. We also conclude, preliminarily, that the relationship between water stress and assimilation varies with scale. Accordingly, we provide some suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute further to understanding the roles of model calibration, model complexity and scale. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brief periods of high temperature which occur near flowering can severely reduce the yield of annual crops such as wheat and groundnut. A parameterisation of this well-documented effect is presented for groundnut (i.e. peanut; Arachis hypogaeaL.). This parameterisation was combined with an existing crop model, allowing the impact of season-mean temperature, and of brief high-temperature episodes at various times near flowering, to be both independently and jointly examined. The extended crop model was tested with independent data from controlled environment experiments and field experiments. The impact of total crop duration was captured, with simulated duration being within 5% of observations for the range of season-mean temperatures used (20-28 degrees C). In simulations across nine differently timed high temperature events, eight of the absolute differences between observed and simulated yield were less than 10% of the control (no-stress) yield. The parameterisation of high temperature stress also allows the simulation of heat tolerance across different genotypes. Three parameter sets, representing tolerant, moderately sensitive and sensitive genotypes were developed and assessed. The new parameterisation can be used in climate change studies to estimate the impact of heat stress on yield. It can also be used to assess the potential for adaptation of cropping systems to increased temperature threshold exceedance via the choice of genotype characteristics. (c) 2005 Elsevier B.V. All rights reserved.