125 resultados para Graphical User Interfaces
Resumo:
Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.
Resumo:
In recent years there has been a growing debate over whether or not standards should be produced for user system interfaces. Those in favor of standardization argue that standards in this area will result in more usable systems, while those against argue that standardization is neither practical nor desirable. The present paper reviews both sides of this debate in relation to expert systems. It argues that in many areas guidelines are more appropriate than standards for user interface design.
Resumo:
Human-like computer interaction systems requires far more than just simple speech input/output. Such a system should communicate with the user verbally, using a conversational style language. It should be aware of its surroundings and use this context for any decisions it makes. As a synthetic character, it should have a computer generated human-like appearance. This, in turn, should be used to convey emotions, expressions and gestures. Finally, and perhaps most important of all, the system should interact with the user in real time, in a fluent and believable manner.
Resumo:
There is increasing pressure to capture of video within Higher Education. Although much research has looked at how communication technologies enhance information transfer during playback of video, consideration of technical issues seems incongruous if we do not consider how presentation mode affects information assimilated by, and satisfaction of, learners with a range of individual differences, and from a range of different backgrounds. This paper considers whether a relationship exists between the media and presentation mode used in recorded content, and the level of information assimilation and satisfaction perceived by learners with a range of individual differences. Results aim to inform learning practitioners whether generic delivery is justified, or whether tailoring content delivery enhances the experience of specific learner groups.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.
Resumo:
In the summer of 1982, the ICLCUA CAFS Special Interest Group defined three subject areas for working party activity. These were: 1) interfaces with compilers and databases, 2) end-user language facilities and display methods, and 3) text-handling and office automation. The CAFS SIG convened one working party to address the first subject with the following terms of reference: 1) review facilities and map requirements onto them, 2) "Database or CAFS" or "Database on CAFS", 3) training needs for users to bridge to new techniques, and 4) repair specifications to cover gaps in software. The working party interpreted the topic broadly as the data processing professional's, rather than the end-user's, view of and relationship with CAFS. This report is the result of the working party's activities. The report content for good reasons exceeds the terms of reference in their strictest sense. For example, we examine QUERYMASTER, which is deemed to be an end-user tool by ICL, from both the DP and end-user perspectives. First, this is the only interface to CAFS in the current SV201. Secondly, it is necessary for the DP department to understand the end-user's interface to CAFS. Thirdly, the other subjects have not yet been addressed by other active working parties.
Resumo:
For those few readers who do not know, CAFS is a system developed by ICL to search through data at speeds of several million characters per second. Its full name is Content Addressable File Store Information Search Processor, CAFS-ISP or CAFS for short. It is an intelligent hardware-based searching engine, currently available with both ICL's 2966 family of computers and the recently announced Series 39, operating within the VME environment. It uses content addressing techniques to perform fast searches of data or text stored on discs: almost all fields are equally accessible as search keys. Software in the mainframe generates a search task; the CAFS hardware performs the search, and returns the hit records to the mainframe. Because special hardware is used, the searching process is very much more efficient than searching performed by any software method. Various software interfaces are available which allow CAFS to be used in many different situations. CAFS can be used with existing systems without significant change. It can be used to make online enquiries of mainframe files or databases or directly from user written high level language programs. These interfaces are outlined in the body of the report.
Resumo:
The ultimate criterion of success for interactive expert systems is that they will be used, and used to effect, by individuals other than the system developers. A key ingredient of success in most systems is involving users in the specification and development of systems as they are being built. However, until recently, system designers have paid little attention to ascertaining user needs and to developing systems with corresponding functionality and appropriate interfaces to match those requirements. Although the situation is beginning to change, many developers do not know how to go about involving users, or else tackle the problem in an inadequate way. This paper discusses the need for user involvement and considers why many developers are still not involving users in an optimal way. It looks at the different ways in which users can be involved in the development process and describes how to select appropriate techniques and methods for studying users. Finally, it discusses some of the problems inherent in involving users in expert system development, and recommends an approach which incorporates both ethnographic analysis and formal user testing.
Resumo:
This paper describes the user modeling component of EPIAIM, a consultation system for data analysis in epidemiology. The component is aimed at representing knowledge of concepts in the domain, so that their explanations can be adapted to user needs. The first part of the paper describes two studies aimed at analysing user requirements. The first one is a questionnaire study which examines the respondents' familiarity with concepts. The second one is an analysis of concept descriptions in textbooks and from expert epidemiologists, which examines how discourse strategies are tailored to the level of experience of the expected audience. The second part of the paper describes how the results of these studies have been used to design the user modeling component of EPIAIM. This module works in a two-step approach. In the first step, a few trigger questions allow the activation of a stereotype that includes a "body" and an "inference component". The body is the representation of the body of knowledge that a class of users is expected to know, along with the probability that the knowledge is known. In the inference component, the learning process of concepts is represented as a belief network. Hence, in the second step the belief network is used to refine the initial default information in the stereotype's body. This is done by asking a few questions on those concepts where it is uncertain whether or not they are known to the user, and propagating this new evidence to revise the whole situation. The system has been implemented on a workstation under UNIX. An example of functioning is presented, and advantages and limitations of the approach are discussed.
Resumo:
Context: Learning can be regarded as knowledge construction in which prior knowledge and experience serve as basis for the learners to expand their knowledge base. Such a process of knowledge construction has to take place continuously in order to enhance the learners’ competence in a competitive working environment. As the information consumers, the individual users demand personalised information provision which meets their own specific purposes, goals, and expectations. Objectives: The current methods in requirements engineering are capable of modelling the common user’s behaviour in the domain of knowledge construction. The users’ requirements can be represented as a case in the defined structure which can be reasoned to enable the requirements analysis. Such analysis needs to be enhanced so that personalised information provision can be tackled and modelled. However, there is a lack of suitable modelling methods to achieve this end. This paper presents a new ontological method for capturing individual user’s requirements and transforming the requirements onto personalised information provision specifications. Hence the right information can be provided to the right user for the right purpose. Method: An experiment was conducted based on the qualitative method. A medium size of group of users participated to validate the method and its techniques, i.e. articulates, maps, configures, and learning content. The results were used as the feedback for the improvement. Result: The research work has produced an ontology model with a set of techniques which support the functions for profiling user’s requirements, reasoning requirements patterns, generating workflow from norms, and formulating information provision specifications. Conclusion: The current requirements engineering approaches provide the methodical capability for developing solutions. Our research outcome, i.e. the ontology model with the techniques, can further enhance the RE approaches for modelling the individual user’s needs and discovering the user’s requirements.
Resumo:
Growing pot poinsettia and similar crops involves careful crop monitoring and management to ensure that height specifications are met. Graphical tracking represents a target driven approach to decision support with simple interpretation. HDC (Horticultural Development Council) Poinsettia Tracker implements a graphical track based on the Generalised Logistic Curve, similar to that of other tracking packages. Any set of curve parameters can be used to track crop progress. However, graphical tracks must be expected to be site and cultivar specific. By providing a simple Curve fitting function, growers can easily develop their own site and variety specific ideal tracks based on past records with increasing quality as more seasons' data are added. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.