84 resultados para Graphic of a Function
Resumo:
Evidence in support of the neuroprotective effects of flavonoids has increased significantly in recent years, although to date much of this evidence has emerged from animal rather than human studies. Nonetheless, with a view to making recommendations for future good practice, we review 15 existing human dietary intervention studies that have examined the effects of particular types of flavonoid on cognitive performance. The studies employed a total of 55 different cognitive tests covering a broad range of cognitive domains. Most studies incorporated at least one measure of executive function/working memory, with nine reporting significant improvements in performance as a function of flavonoid supplementation compared to a control group. However, some domains were overlooked completely (e.g. implicit memory, prospective memory), and for the most part there was little consistency in terms of the particular cognitive tests used making across study comparisons difficult. Furthermore, there was some confusion concerning what aspects of cognitive function particular tests were actually measuring. Overall, while initial results are encouraging, future studies need to pay careful attention when selecting cognitive measures, especially in terms of ensuring that tasks are actually sensitive enough to detect treatment effects.
Resumo:
Background: Supplementation of the diet with fish oil, which is rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is reported to decrease several markers of immune function. However, whether EPA, DHA, or a combination of the 2 exerts these immunomodulatory effects is unclear. Objective: The objective of the study was to determine the effects of supplementation with an EPA-rich or DHA-rich oil on a range of immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes in healthy humans. Design: In a placebo-controlled, double-blind, parallel study, 42 healthy subjects were randomly allocated to receive supplementation with either placebo (olive oil), EPA (4.7 g/d), or DHA (4.9 g/d) for 4 wk. Blood samples were taken before and after supplementation. Results: The fatty acid composition of plasma phospholipids and neutrophils was dramatically altered by supplementation with EPA or DHA, and the effects of EPA differed notably from those of DHA. DHA supplementation decreased T lymphocyte activation, as assessed by expression of CD69, whereas EPA supplementation had no significant effect. Neither the EPA-rich oil nor the DHA-rich oil had any significant effect on monocyte or neutrophil phagocytosis or on cytokine production or adhesion molecule expression by peripheral blood mononuclear cells. Conclusions: Supplementation with DHA, but not with EPA, suppresses T lymphocyte activation, as assessed by expression of CD69. EPA alone does not, therefore, influence CD69 expression. No other marker of immune function assessed in this study was significantly affected by either EPA or - DHA.
Resumo:
Regular consumption of green tea polyphenols (GTP) is thought to reduce the risk of cardiovascular disease (CVD) but has also been associated with liver toxicity. The present trial aimed to assess the safety and potential CVD health beneficial effects of daily GTP consumption. We conducted a placebo-controlled parallel study to evaluate the chronic effects of GTP on liver function and CVD risk biomarkers in healthy men. Volunteers (treatment: n = 17, BMI 26.7 +/- 3.3 kg/m(2), age 41 +/- 9 y; placebo, n = 16, BMI 25.4 +/- 3.3 kg/m(2), age 40 +/- 10 y) consumed for 3 wk 6 capsules per day (2 before each principal meal) containing green tea extracts (equivalent to 714 mg/d GTP) or placebo. At the beginning and end of the intervention period, we collected blood samples from fasting subjects and measured vascular tone using Laser Doppler lontophoresis. Biomarkers of liver function and CVD risk (including blood pressure, plasma lipids, and asymmetric dimethylarginine) were unaffected by GTP consumption. After treatment, the ratio of total:HDL cholesterol was significantly reduced in participants taking GTP capsules compared with baseline. Endothelial-dependent and -independent vascular reactivity did not significantly differ between treatments. In conclusion, the present data suggests that the daily consumption of high doses of GTP by healthy men for 3 wk is safe but without effects on CVD risk biomarkers other than the total:HDL cholesterol ratio. J. Nutr. 139: 58-62, 2009.
Resumo:
The molecular mechanisms underlying the initiation and control of the release of cytochrome c during mitochondrion-dependent apoptosis are thought to involve the phosphorylation of mitochondrial Bcl-2 and Bcl-x(L). Although the c-Jun N-terminal kinase (JNK) has been proposed to mediate the phosphorylation of Bcl-2/Bcl-x(L) the mechanisms linking the modification of these proteins and the release of cytochrome c remain to be elucidated. This study was aimed at establishing interdependency between JNK signalling and mitochondrial apoptosis. Using an experimental model consisting of isolated, bioenergetically competent rat brain mitochondria, these studies show that (i) JNK catalysed the phosphorylation of Bcl-2 and Bcl-x(L) as well as other mitochondrial proteins, as shown by two-dimensional isoelectric focusing/SDS/PAGE; (ii) JNK-induced cytochrome c release, in a process independent of the permeability transition of the inner mitochondrial membrane (imPT) and insensitive to cyclosporin A; (iii) JNK mediated a partial collapse of the mitochondrial inner-membrane potential (Deltapsim) in an imPT- and cyclosporin A-independent manner; and (iv) JNK was unable to induce imPT/swelling and did not act as a co-inducer, but as an inhibitor of Ca-induced imPT. The results are discussed with regard to the functional link between the Deltapsim and factors influencing the permeability transition of the inner and outer mitochondrial membranes. Taken together, JNK-dependent phosphorylation of mitochondrial proteins including, but not limited to, Bcl-2/Bcl-x(L) may represent a potential of the modulation of mitochondrial function during apoptosis.
Resumo:
CVD are the leading cause of death worldwide. Hypertension, a major controllable risk factor of CVD, is intimately associated with vascular dysfunction, a defect which is also now recognised to be a major, modifiable risk factor for the development of CVD. The purpose of the present review was to critically evaluate the evidence for the effects of milk proteins and their associated peptides on blood pressure (BP) and vascular dysfunction. After a detailed literature search, the number of human trials evaluating the antihypertensive effects of casein-derived peptides (excluding isoleucine-proline-proline and valine-proline-proline) was found to be limited; the studies were preliminary with substantial methodological limitations. Likewise, the data from human trials that examined the effects of whey protein and peptides were also scarce and inconsistent. To date, only one study has conducted a comparative investigation on the relative effects of the two main intact milk proteins on BP and vascular function. While both milk proteins were shown to reduce BP, only whey protein improved measures of arterial stiffness. In contrast, a growing number of human trials have produced evidence to support beneficial effects of both milk proteins and peptides on vascular health. However, comparison of the relative outcomes from these trials is difficult owing to variation in the forms of assessment and measures of vascular function. In conclusion, there is an accumulating body of evidence to support positive effects of milk proteins in improving and/or maintaining cardiovascular health. However, the variable quality of the studies that produced this evidence, and the lack of robust, randomised controlled intervention trials, undermines the formulation of firm conclusions on the potential benefits of milk proteins and peptides on vascular health.
Resumo:
Background and Aims: We have reported that adverse effects on flow-mediated dilation of an acute elevation of non-esterified fatty acids rich in saturated fat (SFA) are reversed following addition of long-chain (LC) n-3 polyunsaturated fatty acids (PUFA), and hypothesised that these effects may be mediated through alterations in insulin signalling pathways. In a subgroup, we explored the effects of raised NEFA enriched with SFA, with or without LC n-3 PUFA, on whole body insulin sensitivity (SI) and responsiveness of the endothelium to insulin infusion. Methods and Results: Thirty adults (mean age 27.8 y, BMI 23.2 kg/m2) consumed oral fat loads on separate occasions with continuous heparin infusion to elevate NEFA between 60-390 min. For the final 150 min, a hyperinsulinaemic-euglycaemic clamp was performed, whilst FMD and circulating markers of endothelial function were measured at baseline, pre-clamp (240 min) and post-clamp (390 min). NEFA elevation during the SFA-rich drinks was associated with impaired FMD (P=0.027) whilst SFA+LC n-3 PUFA improved FMD at 240 min (P=0.003). In males, insulin infusion attenuated the increase in FMD with SFA+LC n-3 PUFA (P=0.049), with SI 10% greater with SFA+LC n-3 PUFA than SFA (P=0.041). Conclusion: This study provides evidence that NEFA composition during acute elevation influences both FMD and SI, with some indication of a difference by gender. However our findings are not consistent with the hypothesis that the effects of fatty acids on endothelial function and SI operate through a common pathway. Trial registered at clinicaltrials.gov, NCT01351324.
Resumo:
Background: Public health strategies to lower cardiovascular disease (CVD) risk involve reducing dietary saturated fatty acid (SFA) intake to ≤10% of total energy (%TE). However, the optimal type of replacement fat is unclear. Objective: We investigated the substitution of 9.5-9.6%TE dietary SFA with either monounsaturated (MUFA) or n-6 polyunsaturated fatty acids (PUFA) on vascular function and other CVD risk factors. Design: Using a randomized, controlled, single-blind, parallel group dietary intervention, 195 men and women aged 21-60 y with moderate CVD risk (≥50% above the population mean) from the United Kingdom followed one of three 16-wk isoenergetic diets (%TE target compositions, total fat:SFA:MUFA:n-6 PUFA): SFA-rich (36:17:11:4, n = 65), MUFA-rich (36:9:19:4, n = 64) or n-6 PUFA-rich (36:9:13:10, n = 66). The primary outcome measure was flow-mediated dilatation (%FMD); secondary outcome measures included fasting serum lipids, microvascular reactivity, arterial stiffness, ambulatory blood pressure, and markers of insulin resistance, inflammation and endothelial activation. Results: Replacing SFA with MUFA or n-6 PUFA did not significantly impact on %FMD (primary endpoint) or other measures of vascular reactivity. Of the secondary outcome measures, substitution of SFA with MUFA attenuated the increase in night systolic blood pressure (-4.9 mm Hg, P = 0.019) and reduced E-selectin (-7.8%, P = 0.012). Replacement with MUFA or n-6 PUFA lowered fasting serum total cholesterol (TC; -8.4% and -9.2%, respectively), low-density lipoprotein cholesterol (-11.3% and -13.6%) and TC to high-density lipoprotein cholesterol ratio (-5.6% and -8.5%) (P ≤ 0.001). These changes in low-density lipoprotein cholesterol equate to an estimated 17-20% reduction in CVD mortality. Conclusions: Substitution of 9.5-9.6%TE dietary SFA with either MUFA or n-6 PUFA did not impact significantly on %FMD or other measures of vascular function. However, the beneficial effects on serum lipid biomarkers, blood pressure and E-selectin offer a potential public health strategy for CVD risk reduction.
Resumo:
In 2007, FTO was identified as the first genome-wide association study (GWAS) gene associated with obesity in humans. Since then, various animal models have served to establish the mechanistic basis behind this association. Many earlier studies focussed on FTO’s effects on food intake via central mechanisms. Emerging evidence, however, implicates adipose tissue development and function in the causal relationship between perturbations in FTO expression and obesity. The purpose of this mini review is to shed light on these new studies of FTO function in adipose tissue and present a clearer picture of its impact on obesity susceptibility.
Resumo:
The failing heart is characterized by complex tissue remodelling involving increased cardiomyocyte death, and impairment of sarcomere function, metabolic activity, endothelial and vascular function, together with increased inflammation and interstitial fibrosis. For years, therapeutic approaches for heart failure (HF) relied on vasodilators and diuretics which relieve cardiac workload and HF symptoms. The introduction in the clinic of drugs interfering with beta-adrenergic and angiotensin signalling have ameliorated survival by interfering with the intimate mechanism of cardiac compensation. Current therapy, though, still has a limited capacity to restore muscle function fully, and the development of novel therapeutic targets is still an important medical need. Recent progress in understanding the molecular basis of myocardial dysfunction in HF is paving the way for development of new treatments capable of restoring muscle function and targeting specific pathological subsets of LV dysfunction. These include potentiating cardiomyocyte contractility, increasing cardiomyocyte survival and adaptive hypertrophy, increasing oxygen and nutrition supply by sustaining vessel formation, and reducing ventricular stiffness by favourable extracellular matrix remodelling. Here, we consider drugs such as omecamtiv mecarbil, nitroxyl donors, cyclosporin A, SERCA2a (sarcoplasmic/endoplasmic Ca(2 +) ATPase 2a), neuregulin, and bromocriptine, all of which are currently in clinical trials as potential HF therapies, and discuss novel molecular targets with potential therapeutic impact that are in the pre-clinical phases of investigation. Finally, we consider conceptual changes in basic science approaches to improve their translation into successful clinical applications.
Resumo:
Impaired mechanosensing leads to heart failure and we have previously shown that a decreased ratio of cytoplasmic to nuclear CSRP3/Muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. Here we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μM blebbistatin resulted in a ∼3 fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signaling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme-oxygenase1 (HO-1) activity with PPZII blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea pig model of angiotensin II infusion (400 ng/kg/min) over 12 weeks. Using subcellular fractionation we showed that the MLP ratio increased 88% (n = 4, P < 0.01) during compensated hypertrophy, but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01 n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO-1 and HDAC signaling.
Resumo:
We investigated the potential function of the system formed by connections between the medial prefrontal cortex and the dorsomedial striatum in aspects of attentional function in the rat. It has been reported previously that disconnection of the same corticostriatal circuit produced marked deficits in performance of a serial, choice reaction-time task while sparing the acquisition of an appetitive Pavlovian approach behaviour in an autoshaping task (Christakou et al., 2001). Here, we hypothesized that unilateral disruption of the same circuit would lead to hemispatial inattention, contrasting with the global attention deficit following complete disconnection of the system. Combined unilateral lesions of the medial prefrontal cortex (mPFC) and the medial caudate-putamen (mCPu) within the same hemisphere produced a severe and long-lasting contralesional neglect syndrome while sparing the acquisition of autoshaping. These results provide further evidence for the involvement of the medial prefrontal-dorsomedial striatal circuit in aspects of attentional function, as well as insight into the nature of neglect deficits following lesions at different levels within corticostriatal circuitry.
Resumo:
BACKGROUND: Flavonoid metabolites remain in blood for periods of time potentially long enough to allow interactions with cellular components of this tissue. It is well-established that flavonoids are metabolised within the intestine and liver into methylated, sulphated and glucuronidated counterparts, which inhibit platelet function. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate evidence suggesting platelets which contain metabolic enzymes, as an alternative location for flavonoid metabolism. Quercetin and a plasma metabolite of this compound, 4'-O-methyl quercetin (tamarixetin) were shown to gain access to the cytosolic compartment of platelets, using confocal microscopy. High performance liquid chromatography (HPLC) and mass spectrometry (MS) showed that quercetin was transformed into a compound with a mass identical to tamarixetin, suggesting that the flavonoid was methylated by catechol-O-methyl transferase (COMT) within platelets. CONCLUSIONS/SIGNIFICANCE: Platelets potentially mediate a third phase of flavonoid metabolism, which may impact on the regulation of the function of these cells by metabolites of these dietary compounds.
Resumo:
The cupin superfamily of proteins is among the most functionally diverse of any described to date. It was named on the basis of the conserved beta-barrel fold ('cupa' is the Latin term for a small barrel), and comprises both enzymatic and non-enzymatic members, which have either one or two cupin domains. Within the conserved tertiary structure, the variety of biochemical function is provided by minor variation of the residues in the active site and the identity of the bound metal ion. This review discusses the advantages of this particular scaffold and provides an evolutionary analysis of 18 different subclasses within the cupin superfamily.
Resumo:
The platelet surface is a dynamic interface that changes rapidly in response to stimuli to coordinate the formation of thrombi at sites of vascular injury. Tight control is essential as loss of organisation may result in the inappropriate formation of thrombi (thrombosis) or excessive bleeding. In this paper we describe the comparative analysis of resting and thrombin-stimulated platelet membrane proteomes and associated proteins to identify proteins important to platelet function. Surface proteins were labelled using a biotin tag and isolated by NeurtrAvidin affinity chromatography. Liquid phase IEF and SDS-PAGE were used to separate proteins, and bands of increased intensity in the stimulated platelet fractions were digested and identified by FT-ICR mass spectrometry. Novel proteins were identified along with proteins known to be translocated to the platelet surface. Furthermore, many platelet proteins revealed changes in location associated with function, including G6B and Hip-55. HIP-55 is an SH3-binding protein important in T-cell receptor signalling. Further analysis of HIP-55 revealed that this adaptor protein becomes increasingly associated with both Syk and integrin beta 3 upon platelet activation. Analysis of HIP-55 deficient platelets revealed reduced fibrinogen binding upon thrombin stimulation, suggesting HIP-55 to be an important regulator of platelet function.
Resumo:
The yncE gene of Escherichia coli encodes a predicted periplasmic protein of unknown function. The gene is de-repressed under iron restriction through the action of the global iron regulator Fur. This suggests a role in iron acquisition, which is supported by the presence of the adjacent yncD gene encoding a potential TonB-dependent outer-membrane transporter. Here, the preliminary crystallographic structure of YncE is reported, revealing that it consists of a seven-bladed beta-propeller which resembles the corresponding domain of the `surface-layer protein' of Methanosarcina mazei. A full structure determination is under way in order to provide insight into the function of this protein.