60 resultados para Goals orientation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion in concentrated polymer systems is described by either the Rouse or the reptation model, which both assume that the relaxation of each polymer chain is independent of the surrounding chains. This, however, is in contradiction with several experiments. In this Letter, we propose a universal description of orientation coupling in polymer melts in terms of the time-dependent coupling parameter κ(t). We use molecular dynamics simulations to show that the coupling parameter increases with time, reaching about 50% at long times, independently of the chain length or blend composition. This leads to predictions of component dynamics in mixtures of different molecular weights from the knowledge of monodisperse dynamics for unentangled melts. Finally, we demonstrate that entanglements do not play a significant role in the observed coupling. © 2010 The American Physical Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the degree of reliability of image sequences taken by off-the-shelf TV cameras for modeling camera rotation and reconstructing 3D structure using computer vision techniques. This is done in spite of the fact that computer vision systems usually use imaging devices that are specifically designed for the human vision. Our scenario consists of a static scene and a mobile camera moving through the scene. The scene is any long axial building dominated by features along the three principal orientations and with at least one wall containing prominent repetitive planar features such as doors, windows bricks etc. The camera is an ordinary commercial camcorder moving along the axial axis of the scene and is allowed to rotate freely within the range +/- 10 degrees in all directions. This makes it possible that the camera be held by a walking unprofessional cameraman with normal gait, or to be mounted on a mobile robot. The system has been tested successfully on sequence of images of a variety of structured, but fairly cluttered scenes taken by different walking cameramen. The potential application areas of the system include medicine, robotics and photogrammetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of monodomain liquid crystalline (LC) elastomers based on a polysiloxane were synthesised. These elastomers were prepared either with one or two cross-linking agents in the presence of a mechanical field. By using the real-time X-ray facility at the University of Reading (AXIS), we have shown that the nematic order parameter 〈P2 〉 is dependent on both the extension λ value and the degree of cross-linking. We have also shown that the monodomain elastomers, exhibiting permanent alignment and 〈P2 〉 values of about 0.5, can be prepared by using only one cross-linking agent making the synthesis of these monodomain LC elastomers much more simple and cost effective than that proposed by Küpfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular orientation parameters have been measured for the non-crystalline component of crosslinked natural rubber samples deformed in uniaxial tension as a function of the extension ratio and of temperature. The orientation parapeters 〈P2(cosα)〉 and 〈P4(cosα)〉 were obtained by an analysis of the anisotropy of the wide-angle X-ray scattering functions. For the measurements made at high temperatures the level of crystallinity detected was negligible and the orientation-strain behaviour could be compared directly with the predictions of molecular models of rubber elasticity. The molecular orientation behaviour with strain was found to be at variance with the estimates of the affine model particularly at low and moderate strains. Extension of the crosslinked rubber at room temperature led to strain-crystallization and measurements of both the molecular orientation of the non-crystalline chains and the degree of crystallinity during extension and relaxation enabled the role of the crystallites in the deformation process to be considered in detail. The intrinsic birefringence of the non-crystalline component was estimated, through the use of the 〈P2(cosα)〉 values obtained from X-ray scattering measurements, to be 0.20±0.02.