38 resultados para Glucose-stimulated insulin secretion
Resumo:
OBJECTIVE: To determine whether the positive statistical associations between measures of total and regional adiposity and measures of glucose, insulin and triacylglycerol ( TAG) metabolism reported in Caucasian men, are also observed in UK Sikhs. DESIGN: A matched cross-sectional study in which each volunteer provided a blood sample after a 12-h overnight fast and had anthropometric measurements taken. SUBJECTS: A total of 55 healthy Caucasian and 55 healthy UK Sikh men were recruited. The Caucasian and Sikh men were matched for age ( 48.7 +/- 10.9 and 48.3 +/- 10.0 y, respectively) and body mass index (BMI) ( 26.1 +/- 2.8 and 26.3 +/- 3.2 kg/m(2), respectively). MEASUREMENTS: Anthropometric measurements were performed to assess total and regional fat depots. The concentrations of plasma total cholesterol, high-density cholesterol (HDL- C), low-density cholesterol (LDL-C) and small dense LDL (LDL3), TAG, glucose, fasting insulin (ins) and nonesterified fatty acids (NEFA) were analysed in fasted plasma. Surrogate measures of insulin resistance (HOMA-IR) and insulin sensitivity (RQUICKI) were calculated from insulin and glucose (HOMA-IR) and insulin, glucose and NEFA ( RQUICKI) measurements. RESULTS: The Sikh men had significantly higher body fat, with the sum of the four skinfold measurements (Ssk) ( P = 0.0001) and subscapular skinfold value (P = 0.009) higher compared with the Caucasian men. The Sikh volunteers also had characteristics of the metabolic syndrome: lower HDL-C (P = 0.07), higher TAG (P = 0.004), higher % LDL3 (P = 0.0001) and insulin resistance (P = 0.05). Both ethnic groups demonstrated positive correlations between insulin and waist circumference (Caucasian: r = 0.661, P = 0.0001; Sikh: r = 0.477, P = 0.0001). The Caucasian men also demonstrated significant positive correlations between central adiposity (r = 0.275, P = 0.04), other measures of adiposity (BMI and suprailiac skinfold) and plasma TAG, whereas the Sikh men showed no correlation for central adiposity (r = 0.019, ns) and TAG with a trend to a negative relationship between other measures ( Ssk and suprailiac) which reached near significance for subscapular skinfold and TAG (r = - 0.246, P = 0.007). The expected positive association between insulin and TAG was observed in the Caucasian men (r = 0.318, P = 0.04) but not in the Sikh men (r = 0.011, ns). CONCLUSIONS: In the Caucasian men, the expected positive association between plasma TAG and centralized body fat was observed. However, a lack of association between centralized, or any other measure of adiposity, and plasma TAG was observed in the matched Sikh men, although both ethnic groups showed the positive association between centralized body fat and insulin resistance, which was less strong for Sikhs. These findings in the Sikh men were not consistent with the hypothesis that there is a clear causal relationship between body fat and its distribution, insulin resistance, and lipid abnormalities associated with the metabolic syndrome, in this ethnic group.
Resumo:
Although chronic fish oil intervention had been shown to have a positive impact on vascular reactivity, very little is known about their acute effects during the postprandial phase. Our aim was to examine the impact of a fish oil-enriched test meal on postprandial vascular reactivity in healthy younger ( < 50 years) v. older ( ≥ 50 years) men. Vascular reactivity was measured at baseline (0 h), 2 and 4 h after the meal by laser Doppler iontophoresis and blood samples taken at 0 and 4 h for the measurement of plasma lipids, total nitrite, glucose and insulin. Acetylcholine- (ACh, endothelial-dependent vasodilator) and sodium nitroprusside (SNP, endothelial-independent vasodilator)-induced reactivities were greater at 4 h than at baseline or 2 h in the younger men (P < 0·04). These changes were not observed in the older men. Comparison of the male groups revealed significantly greater responses to ACh (P = 0·006) and SNP (P = 0·05) at 4 h in the younger compared with the older males. Postprandial NEFA concentrations were also greater at 4 h in the younger compared with the older men (P = 0·005), with no differences observed for any of the other analytes. Multiple regression analysis revealed age to be the most significant predictor of both ACh and SNP induced reactivity 4 h after the meal. In conclusion, the ingestion of a meal enriched in fish oil fatty acids was shown to improve postprandial vascular reactivity at 4 h in our younger men, with little benefit evident in our older men.
Resumo:
Aspartame has been previously shown to increase satiety. This study aimed to investigate a possible role for the satiety hormones cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) in this effect. The effects of the constituents of aspartame, phenylalanine and aspartic acid, were also examined. Six subjects consumed an encapsulated preload consisting of either 400 mg aspartame, 176 mg aspartic acid + 224 mg phenylalanine, or 400 mg corn flour (control), with 1.5 g paracetamol dissolved in 450 ml water to measure gastric emptying. A 1983-kJ liquid meal was consumed 60 min later. Plasma CCK, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucose, and insulin were measured over 0-120 min. Gastric emptying was measured from 0 to 60 min. Plasma GLP-1 concentrations decreased following the liquid meal (60-120 min) after both the aspartame and amino acids preloads (control, 2096.9 pmol/l min; aspartame, 536.6 pmol/l min; amino acids, 861.8 pmol/l min; incremental area under the curve [AUC] 60-120 min, P<.05). Desire to cat was reduced from 60 to 120 min following the amino acids preload (control, -337.1 mm min; aspartame, -505.4 mm min; amino acids, -1497.1 mm min; incremental AUC 60-120 min, P<.05). However, gastric emptying rates, plasma CCK, GIP, insulin, and glucose concentrations were unaffected. There was a correlation between the increase in plasma phenylalanine and decrease in desire to eat after the liquid meal following the constituent amino acids (r = -.9774, P=.004). In conclusion, it is unlikely that aspartame increases satiety via CCK- or GLP-1-mediated mechanisms, but small changes in circulating phenylalanine concentrations may influence appetite. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
The average UK adult consumes less than three portions of fruit and vegetables daily, despite evidence to suggest that consuming five portions daily could help prevent chronic diseases. It is recommended that fruit juice should only count as one of these portions, as juicing removes fibre and releases sugars. However, fruit juices contain beneficial compounds such as vitamin C and flavonoids and could be a useful source of dietary phytochemicals. Two randomised controlled cross-over intervention studies investigating the effects of chronic and acute consumption of commercially-available fruit- and vegetable-puree-based drinks (FVPD) on bioavailability, antioxidant status and CVD risk factors are described. Blood and urine samples were collected during both studies and vascular tone was measured using laser Doppler imaging. In the chronic intervention study FVPD consumption was found to significantly increase dietary carotenoids (P = 0.001) and vitamin C (P = 0.003). Plasma carotenoids were increased (P = 0.001), but the increase in plasma vitamin C was not significant. There were no significant effects on oxidative stress, antioxidant status and other CVD risk factors. In the acute intervention study FVPD were found to increase total plasma nitrate and nitrite (P = 0.001) and plasma vitamin C (P = 0.002). There was no effect on plasma lipids or uric acid, but there was a lower glucose and insulin peak concentration after consumption of the FVPD compared with the sugar-matched control. There was a trend towards increased vasodilation following both chronic and acute FVPD consumption. All volunteers were retrospectively genotyped for the eNOS G298T polymorphism and the effect of genotype on the measurements is discussed. Overall, there was a non-significant trend towards increased endothelium-dependent vasodilation following both acute and chronic FVPD consumption. However, there was a significant time x treatment effect (P < 0.05) of acute FVPD consumption in individuals with the GG variant of the eNOS gene.
Resumo:
Background: Dietary a-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. Objective: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. Design: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. Results: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/-SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma a-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. Conclusion: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.
Resumo:
Chronic fish oil intervention had been shown to have a positive impact on endothelial function. Although high-fat meals have often been associated with a loss of postprandial vascular reactivity, studies examining the effects of fish oil fatty acids on vascular function in the postprandial phase are limited. The aim of the present study was to examine the impact of the addition of fish oil fatty acids to a standard test meal on postprandial vascular reactivity. A total of 25 men received in a random order either a placebo oil meal (40 g of mixed fat; fatty acid profile representative of the U.K. diet) or a fish oil meal (31 g of mixed fat and 9 g of fish oil) on two occasions. Vascular reactivity was measured at baseline (0 h) and 4 h after the meal by laser Doppler iontophoresis, and blood samples were taken for the measurement of plasma lipids, total nitrite, glucose and insulin. eNOS (endothelial NO synthase) and NADPH oxidase gene expression were determined in endothelial cells after incubation with TRLs (triacylglycerol-rich lipoproteins) isolated from the plasma samples taken at 4 h. Compared with baseline, sodium nitroprusside (an endothelium-independent vasodilator)-induced reactivity (P = 0.024) and plasma nitrite levels (P = 0.001) were increased after the fish oil meal. In endothelial cells, postprandial TRLs isolated after the fish oil meal increased eNOS and decreased NADPH oxidase gene expression compared with TRLs isolated following the placebo oil meal (P <= 0.03). In conclusion, meal fatty acids appear to be an important determinant of vascular reactivity, with fish oils significantly improving postprandial endothelium-independent vasodilation.
Resumo:
Background & aims The consumption of long chain n − 3 polyunsaturated fatty acids (LC n − 3 PUFA) is known to be cardio-protective. Data on the influence of LC n − 3 PUFA on arterial stiffness in the postprandial state is limited. The aim of this study was to investigate the acute effects of a LC n − 3 PUFA-rich meal on measures of arterial stiffness. Methods Twenty-five healthy subjects (12 men, 13 women) received a control and a LC n − 3 PUFA-rich meal on two occasions in a random order. Arterial stiffness was measured at baseline, 30, 60, 90, 120, 180 and 240 min after meal consumption by pulse wave analysis and digital volume pulse to derive an augmentation index and a stiffness index respectively. Blood samples were taken for measurement of lipids, glucose and insulin. Results Consumption of the LC n − 3 PUFA-rich meal had an attenuating effect on augmentation index (P = 0.02) and stiffness index (P = 0.03) compared with the control meal. A significant treatment effect (P = 0.036) was seen for plasma non-esterified fatty acids concentrations. Conclusions These data indicate that acute LC n − 3 PUFA-rich meal consumption can improve postprandial arterial stiffness. This has important implications for the beneficial properties of LC n − 3 PUFA and cardiovascular risk reduction.
Resumo:
Aims/hypothesis: Variants of the TCF7L2 gene predict the development of type 2 diabetes mellitus (T2DM). We investigated the associations between gene variants of TCF7L2 and clinical features of the metabolic syndrome (MetS) (an entity often preceeding T2DM), and their interaction with non-genetic factors, including plasma saturated fatty acids (SFA) concentration and insulin resistance (IR). Methods: Fasting lipid profiles, insulin sensitivity, insulin secretion, anthropometrics, blood pressure and 10 gene variations of the TCF7L2 gene were determined in 450 subjects with MetS. Results: Several single nucleotide polymorphisms (SNP) showed phenotypic associations independent of SFA or IR. Carriers of the rare T allele of rs7903146, and of three other SNPs in linkage disequilibrium with rs7903146, had lower blood pressure and insulin secretion. High IR and the presence of the T-allele of rs7903146 acted synergistically to define those with reduced insulin secretion. Carriers of the minor allele of rs290481 exhibited an altered lipid profile, with increased plasma levels of apolipoprotein B, non-esterified fatty acids, cholesterol and apolipoprotein B in triglyceride rich lipoproteins, and LDL cholesterol. Carriers of the minor allele of rs11196224 that had higher plasma SFA levels showed elevated procoagulant/proinflammatory biomarkers, impaired insulin secretion and increased IR, whereas carriers of the minor allele of rs17685538 with high plasma SFA levels exhibited higher blood pressure. Conclusions/interpretation: SNP in the TCF7L2 gene are associated with differences in insulin secretion, blood pressure, blood lipids and coagulation in MetS patients, and may be modulated by SFA in plasma or IR.
Resumo:
BACKGROUND: In 1997, the US Food and Drug Administration passed a unique ruling that allowed oat bran to be registered as the first cholesterol-reducing food at a dosage of 3 g beta-glucan/d. OBJECTIVE: The effects of a low dose of oat bran in the background diet only were investigated in volunteers with mild-to-moderate hyperlipidemia. DESIGN: The study was a double-blind, placebo-controlled, randomized, parallel study. Sixty-two healthy men (n = 31) and women (n = 31) were randomly allocated to consume either 20 g oat bran concentrate (OBC; containing 3 g beta-glucan) or 20 g wheat bran (control) daily for 8 wk. Fasting blood samples were collected at weeks -1, 0, 4, 8, and 12. A subgroup (n = 17) was studied postprandially after consumption of 2 meals (containing no OBC or wheat bran) at baseline and after supplementation. Fasting plasma samples were analyzed for total cholesterol, HDL cholesterol, triacylglycerol, glucose, and insulin. LDL cholesterol was measured by using the Friedewald formula. The postprandial samples were anlayzed for triacylglycerol, glucose, and insulin. RESULTS: No significant difference was observed in fasting plasma cholesterol, LDL cholesterol, glucose, or insulin between the OBC and wheat-bran groups. HDL-cholesterol concentrations fell significantly from weeks 0 to 8 in the OBC group (P = 0.05). There was a significant increase in fasting glucose concentrations after both OBC (P = 0.03) and wheat-bran (P = 0.02) consumption. No significant difference was found between the OBC and wheat-bran groups in any of the postprandial variables measured. CONCLUSIONS: A low dosage of beta-glucan (3 g/d) did not significantly reduce total cholesterol or LDL cholesterol in volunteers with plasma cholesterol concentrations representative of a middle-aged UK population.
Resumo:
Epidemiological evidence shows that a diet high in monounsaturated fatty acids (MUFA) but low in saturated fatty acids (SFA) is associated with reduced risk of CHD. The hypocholesterolaemic effect of MUFA is known but there has been little research on the effect of test meal MUFA and SFA composition on postprandial lipid metabolism. The present study investigated the effect of meals containing different proportions of MUFA and SFA on postprandial triacylglycerol and non-esterified fatty acid (NEFA) metabolism. Thirty healthy male volunteers consumed three meals containing equal amounts of fat (40 g), but different proportions of MUFA (12, 17 and 24% energy) in random order. Postprandial plasma triacylglycerol, apolipoprotein B-48, cholesterol, HDL-cholesterol, glucose and insulin concentrations and lipoprotein lipase (EC 3.1.1.34) activity were not significantly different following the three meals which varied in their levels of SFA and MUFA. There was a significant difference in the postprandial NEFA response between meals. The incremental area under the curve of postprandial plasma NEFA concentrations was significantly (P = 0.03) lower following the high-MUFA meal. Regression analysis showed that the non-significant difference in fasting NEFA concentrations was the most important factor determining difference between meals, and that the test meal MUFA content had only a minor effect. In conclusion, varying the levels of MUFA and SFA in test meals has little or no effect on postprandial lipid metabolism.
Resumo:
OBJECTIVE: To determine the effect of altering meal frequency on postprandial lipaemia and associated parameters. DESIGN: A randomized open cross over study to examine the programming effects of altering meal frequency. A standard test meal was given on three occasions following: (i) the normal diet; (ii) a period of two weeks on a nibbling and (iii) a period of two weeks on a gorging diet. SETTING: Free living subjects associated with the University of Surrey. SUBJECTS: Eleven female volunteers (age 22 +/- 0.89 y) were recruited. INTERVENTIONS: The subjects were requested to consume the same foods on either a nibbling diet (12 meals per day) or a gorging diet (three meals per day) for a period of two weeks. The standard test meal containing 80 g fat, 63 g carbohydrate and 20 g protein was administered on the day prior to the dietary intervention and on the day following each period of intervention. MAJOR OUTCOME MEASURES: Fasting and postprandial blood samples were taken for the analysis of plasma triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin, glucose-dependent insulinotropic polypeptide levels (GIP) and glucagon-like peptide (GLP-1), fasting total, low density lipoprotein (LDL)- and high density lipoprotein (HDL)-cholesterol concentrations and postheparin lipoprotein lipase (LPL) activity measurements. Plasma paracetamol was measured following administration of a 1.5 g paracetamol load with the meal as an index of gastric emptying. RESULTS: The compliance to the two dietary regimes was high and there were no significant differences between the nutrient intakes on the two intervention diets. There were no significant differences in fasting or postprandial plasma concentrations of triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin, GIP and GLP-1 levels, in response to the standard test meal following the nibbling or gorging dietary regimes. There were no significant differences in fasting total or LDL-cholesterol concentrations, or in the 15 min postheparin lipoprotein lipase activity measurements. There was a significant increase in HDL-cholesterol in the subjects following the gorging diet compared to the nibbling diet. DISCUSSION: The results suggest that previous meal frequency for a period of two weeks in young healthy women does not alter the fasting or postprandial lipid or hormonal response to a standard high fat meal. CONCLUSIONS: The findings of this study did not confirm the previous studies which suggested that nibbling is beneficial in reducing the concentrations of lipid and hormones. The rigorous control of diet content and composition in the present study compared with others, suggest reported effects of meal frequency may be due to unintentional alteration in nutrient and energy intake in previous studies.
Resumo:
OBJECTIVE: Substrate and hormone responses to meals of differing fat content were evaluated in normal subjects in order to investigate mechanisms underlying the regulation of postprandial lipoprotein concentration. DESIGN: A randomised cross-over study with three different meals on three occasions. SETTING: Free-living subjects associated with Surrey University. SUBJECTS: Ten male volunteers (aged 18-23 years) were recruited. INTERVENTIONS: Three test meals containing 20, 40 or 80 g fat but identical carbohydrate and protein content were randomly allocated to volunteers. MAJOR OUTCOME MEASURES: Pre- and postprandial blood samples were taken for the analysis of plasma triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin and glucose-dependent insulinotrophic polypeptide levels and postheparin lipoprotein lipase activity measurements. RESULTS: Peak triacylglycerol concentrations and lipoprotein lipase activity measurements were significantly higher following the 80 g than the 20 g fat meal (P = 0.009 and P = 0.049 respectively). Areas under the glucose-dependent insulinotrophic polypeptide time-response concentration curves were significantly higher following the 80 g compared with the 20 g fat meal (P = 0.04), but no differences in insulin response to the meals were seen. The 30-360 min decrease in the non-esterified fatty acid concentration was less following the 80 g than the 20 g meal (P = 0.001). CONCLUSIONS: The results suggest that glucose-dependent insulinotrophic polypeptide may mediate increased lipoprotein lipase activity in response to fat-containing meals and may play a role in circulating lipoprotein homeostasis. This mechanism may be overloaded with high fat meals with adverse consequences on circulating triacylglycerol and NEFA concentrations.
Resumo:
Epidemiological studies indicate that diets rich in fruits and vegetables (F&V) are protective against cardiovascular diseases (CVD). Pureed F&V products retain many beneficial components, including flavonoids, carotenoids, vitamin C and dietary fibres. This study aimed to establish the physiological effects of acute ingestion of F&V puree-based drink (FVPD) on vasodilation, antioxidant status, phytochemical bioavailability and other CVD risk factors. 24 Subjects, aged 30-70 years, completed the randomised, single-blind, controlled, crossover test meal study. Subjects consumed 400 ml FVPD, or fruit-flavoured sugar-matched control, after following a low-flavonoid diet for 5 days. Blood and urine samples were collected throughout the study day and vascular reactivity was assessed at 90-minute intervals using laser Doppler iontophoresis (LDI). FVPD significantly increased plasma vitamin C (P=0.002) and total nitrate/nitrite (P=0.001) concentrations. There was a near significant time by treatment effect on ex vivo LDL oxidation (P=0.068), with a longer lag phase after consuming FVPD. During the 6 hours after juice consumption the antioxidant capacity of plasma increased significantly (P=0.003) and there was a simultaneous increase in plasma and urinary phenolic metabolites (P<0.05). There were significantly lower glucose and insulin peaks after ingestion of FVPD compared with control (P=0.019 and P=0.003) and a trend towards increased endothelium-dependent vasodilation following FVPD consumption (P=0.061). Overall, FVPD consumption significantly increased plasma vitamin C and total nitrate/nitrite concentrations, with a trend towards increased endothelium-dependent vasodilation. Pureed F&V products are useful vehicles for increasing micronutrient status, plasma antioxidant capacity and in vivo NO generation, which may contribute to CVD risk reduction.
Resumo:
Valproic acid (VPA) is used widely to treat epilepsy and bipolar disorder. Women undergoing VPA treatment reportedly have an increased incidence of polycystic ovarian syndrome (PCOS)-like symptoms including hyperandrogenism and oligo- or amenorrhoea. To investigate potential direct effects of VPA on ovarian steroidogenesis we used primary bovine theca (TC) and granulosa (GC) cells maintained under conditions that preserve their 'follicular' phenotype. Effects of VPA (7.8-500 µg/ml) on TC were tested with/without LH. Effects of VPA on GC were tested with/without FSH or IGF analogue. VPA reduced (P<0.0001) both basal (70% suppression; IC(50) 67±10 µg/ml) and LH-induced (93% suppression; IC(50) 58±10 µg/ml) androstenedione secretion by TC. VPA reduced CYP17A1 mRNA abundance (>99% decrease; P<0.0001) with lesser effects on LHR, STAR, CYP11A1 and HSD3B1 mRNA (<90% decrease; P<0.05). VPA only reduced TC progesterone secretion induced by the highest (luteinizing) LH dose tested; TC number was unaffected by VPA. At higher concentrations (125-500 µg/ml) VPA inhibited basal, FSH- and IGF-stimulated estradiol secretion (P<0.0001) by GC without affecting progesterone secretion or cell number. VPA reversed FSH-induced upregulation of CYP19A1 and HSD17B1 mRNA abundance (P<0.001). The potent histone deacetylase (HDAC) inhibitors trichostatin A and scriptaid also suppressed TC androstenedione secretion and granulosal cell oestrogen secretion suggesting that the action of VPA reflects its HDAC inhibitory properties. In conclusion, these findings refute the hypothesis that VPA has a direct stimulatory action on TC androgen output. On the contrary, VPA inhibits both LH-dependent androgen production and FSH/IGF-dependent estradiol production in this in vitro bovine model, likely by inhibition of HDAC.
Resumo:
Genes play an important role in the development of diabetes mellitus. Putative susceptibility genes could be the key to the development of diabetes. Type 1 diabetes mellitus is one of the most common chronic diseases of childhood. A combination of genetic and environmental factors is most likely the cause of Type 1 diabetes. The pathogenetic sequence leading to the selective autoimmune destruction of islet beta-cells and development of Type 1 diabetes involves genetic factors, environmental factors, immune regulation and chemical mediators. Unlike Type 1 diabetes mellitus, Type 2 diabetes is often considered a polygenic disorder with multiple genes located on different chromosomes being associated with this condition. This is further complicated by numerous environmental factors which also contribute to the clinical manifestation of the disorder in genetically predisposed persons. Only a minority of cases of type 2 diabetes are caused by single gene defects such as maturity onset diabetes of the young (MODY), syndrome of insulin resistance (insulin receptor defect) and maternally inherited diabetes and deafness (mitochondrial gene defect). Although Type 2 diabetes mellitus appears in almost epidemic proportions our knowledge of the mechanism of this disease is limited. More information about insulin secretion and action and the genetic variability of the various factors involved will contribute to better understanding and classification of this group of diseases. This article discusses the results of various genetic studies on diabetes with special reference to Indian population.