63 resultados para Global environmental change -- Health aspects
Resumo:
This paper investigates whether and to what extent a wide range of actors in the UK are adapting to climate change, and whether this is evidence of a social transition. We document evidence of over 300 examples of early adopters of adaptation practice to climate change in the UK. These examples span a range of activities from small adjustments (or coping) to building adaptive capacity, implementing actions and creating deeper systemic change in public and private organisations in a range of sectors. We find that adaptation in the UK has been dominated by government initiatives and has principally occurred in the form of research into climate change impacts. These actions within government stimulate a further set of actions at other scales in public agencies, regulatory agencies and regional government (or in the devolved administrations), though with little real evidence of climate change adaptation initiatives trickling down to local government level. The water supply and flood defence sectors, requiring significant investment in large scale infrastructure such as reservoirs and coastal defences, have invested more heavily in identifying potential impacts and adaptations. Economic sectors that are not dependent on large scale infrastructure appear to be investing far less effort and resources in preparing for climate change. We conclude that while the government-driven top-down targeted adaptation approach has generated anticipatory action at low cost, it may also have created enough niche activities to allow for diffusion of new adaptation practices in response to real or perceived climate change. These results have significant implications for how climate policy can be developed to support autonomous adaptors in the UK and other countries.
Resumo:
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated lobal warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre’s coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 GtC by 2100 in a climate change simulation compared with an 80 GtC decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.
Resumo:
Scenarios are used to explore the consequences of different adaptation and mitigation strategies under uncertainty. In this paper, two scenarios are used to explore developments with (1) no mitigation leading to an increase of global mean temperature of 4 °C by 2100 and (2) an ambitious mitigation strategy leading to 2 °C increase by 2100. For the second scenario, uncertainties in the climate system imply that a global mean temperature increase of 3 °C or more cannot be ruled out. Our analysis shows that, in many cases, adaptation and mitigation are not trade-offs but supplements. For example, the number of people exposed to increased water resource stress due to climate change can be substantially reduced in the mitigation scenario, but adaptation will still be required for the remaining large numbers of people exposed to increased stress. Another example is sea level rise, for which, from a global and purely monetary perspective, adaptation (up to 2100) seems more effective than mitigation. From the perspective of poorer and small island countries, however, stringent mitigation is necessary to keep risks at manageable levels. For agriculture, only a scenario based on a combination of adaptation and mitigation is able to avoid serious climate change impacts.
Resumo:
At Woolaston on the western shores of the middle Severn Estuary c. 7 km upstream of Chepstow intertidal Holocene sediment exposures have been surveyed and the stratigraphic sequence established by coring and limited excavation. There are two main peats each with a submerged forest. An existing dendrochronological sequence for the Upper Submerged Forest has been extended and the preliminary results of pollen analysis from the peat sequence are summarised. A few flint flakes were found but were not stratified in the mid-Holocene sequence. There is evidence for late Mesolithic / early Neolithic burning episodes which may relate to human activity. Evidence is reported for Medieval activity and the extensive modification of drainage in this period is suggested.
Resumo:
Radiative forcing is a useful tool for predicting equilibrium global temperature change. However, it is not so useful for predicting global precipitation changes, as changes in precipitation strongly depend on the climate change mechanism and how it perturbs the atmospheric and surface energy budgets. Here a suite of climate model experiments and radiative transfer calculations are used to quantify and assess this dependency across a range of climate change mechanisms. It is shown that the precipitation response can be split into two parts: a fast atmospheric response that strongly correlates with the atmospheric component of radiative forcing, and a slower response to global surface temperature change that is independent of the climate change mechanism, ∼2-3% per unit of global surface temperature change. We highlight the precipitation response to black carbon aerosol forcing as falling within this range despite having an equilibrium response that is of opposite sign to the radiative forcing and global temperature change.
Resumo:
This paper provides a framework for the theme issue by exploring links between environmental change and human migration. We review evidence that demonstrates that millions of people have moved or are likely to move towards and not away from environmental risk and hazard by moving from rural areas to rapidly growing urban areas. Moreover, some people may choose not to move or be unable to move. Environmental change may further erode household resources in such a way that migration becomes less and not more likely, even in the context of quite significant environmental change posing serious threats to the sustainability of livelihoods. This creates the possibility that populations will be trapped in areas that expose them to serious risk. We argue that the links between environmental change, migration, and governance are of significant importance, and directly influence the modes and efficacy of migration governance at different levels.