62 resultados para Global Action Plan for the Earth : GAP
Resumo:
The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.
Resumo:
Ozone and temperature profiles from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been assimilated, using three-dimensional variational assimilation, into a stratosphere troposphere version of the Met Office numerical weather-prediction system. Analyses are made for the month of September 2002, when there was an unprecedented split in the southern hemisphere polar vortex. The analyses are validated against independent ozone observations from sondes, limb-occultation and total column ozone satellite instruments. Through most of the stratosphere, precision varies from 5 to 15%, and biases are 15% or less of the analysed field. Problems remain in the vortex and below the 60 hPa. level, especially at the tropopause where the analyses have too much ozone and poor agreement with independent data. Analysis problems are largely a result of the model rather than the data, giving confidence in the MIPAS ozone retrievals, though there may be a small high bias in MIPAS ozone in the lower stratosphere. Model issues include an excessive Brewer-Dobson circulation, which results both from known problems with the tracer transport scheme and from the data assimilation of dynamical variables. The extreme conditions of the vortex split reveal large differences between existing linear ozone photochemistry schemes. Despite these issues, the ozone analyses are able to successfully describe the ozone hole split and compare well to other studies of this event. Recommendations are made for the further development of the ozone assimilation system.
Resumo:
On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.
Resumo:
At present, there is much anxiety regarding the security of energy supplies; for example, the UK and other European States are set to become increasingly dependant upon imports of natural gas from states with which political relations are often strained. These uncertainties are felt acutely by the electricity generating sector, which is facing major challenges regarding the choice of fuel mix in the years ahead. Nuclear energy may provide an alternative; however, in the UK, progress in replacing the first generation reactors is exceedingly slow. A number of operators are looking to coal as a means of plugging the energy gap. However, in the light of ever more stringent legal controls on emissions, this step cannot be taken without the adoption of sophisticated pollution abatement technology. This article examines the role which legal concepts such as Best Available Techniques (BAT) must play in bringing about these changes.
Resumo:
The Earth-directed coronal mass ejection (CME) of 8 April 2010 provided an opportunity for space weather predictions from both established and developmental techniques to be made from near–real time data received from the SOHO and STEREO spacecraft; the STEREO spacecraft provide a unique view of Earth-directed events from outside the Sun-Earth line. Although the near–real time data transmitted by the STEREO Space Weather Beacon are significantly poorer in quality than the subsequently downlinked science data, the use of these data has the advantage that near–real time analysis is possible, allowing actual forecasts to be made. The fact that such forecasts cannot be biased by any prior knowledge of the actual arrival time at Earth provides an opportunity for an unbiased comparison between several established and developmental forecasting techniques. We conclude that for forecasts based on the STEREO coronagraph data, it is important to take account of the subsequent acceleration/deceleration of each CME through interaction with the solar wind, while predictions based on measurements of CMEs made by the STEREO Heliospheric Imagers would benefit from higher temporal and spatial resolution. Space weather forecasting tools must work with near–real time data; such data, when provided by science missions, is usually highly compressed and/or reduced in temporal/spatial resolution and may also have significant gaps in coverage, making such forecasts more challenging.