43 resultados para Gibas, Ronald
Resumo:
Background: Thiol isomerases are a family of endoplasmic reticulum enzymes which orchestrate redox-based modifications of protein disulphide bonds. Previous studies have identified important roles for the thiol isomerases PDI and ERp5 in the regulation of normal platelet function. Objectives: Recently, we demonstrated the presence of a further five thiol isomerases at the platelet surface. In this report we aim to report the role of one of these enzymes - ERp57 in the regulation of platelet function. Methods/Results: Using enzyme activity function blocking antibodies, we demonstrate a role for ERp57 in platelet aggregation, dense granule secretion, fibrinogen binding, calcium mobilisation and thrombus formation under arterial conditions. In addition to the effects of ERp57 on isolated platelets, we observe the presence of ERp57 in the developing thrombus in vivo. Furthermore the inhibition of ERp57 function was found to reduce laser-injury induced arterial thrombus formation in a murine model of thrombosis. Conclusions: These data suggest that ERp57 is important for normal platelet function and opens up the possibility that the regulation of platelet function by a range of cell surface thiol isomerases may represent a broad paradigm for the regulation of haemostasis and thrombosis.
Resumo:
Proteomics approaches have made important contributions to the characterisation of platelet regulatory mechanisms. A common problem encountered with this method, however, is the masking of low-abundance (e.g. signalling) proteins in complex mixtures by highly abundant proteins. In this study, subcellular fractionation of washed human platelets either inactivated or stimulated with the glycoprotein (GP) VI collagen receptor agonist, collagen-related peptide, reduced the complexity of the platelet proteome. The majority of proteins identified by tandem mass spectrometry are involved in signalling. The effect of GPVI stimulation on levels of specific proteins in subcellular compartments was compared and analysed using in silico quantification, and protein associations were predicted using STRING (the search tool for recurring instances of neighbouring genes/proteins). Interestingly, we observed that some proteins that were previously unidentified in platelets including teneurin-1 and Van Gogh-like protein 1, translocated to the membrane upon GPVI stimulation. Newly identified proteins may be involved in GPVI signalling nodes of importance for haemostasis and thrombosis.
Resumo:
This study investigated 37 diverse sainfoin (Onobrychis viciifolia Scop.) accessions from the EU ‘HealthyHay’ germplasm collection for proanthocyanidin (PA) content and composition. Accessions displayed a wide range of differences: PA contents varied from 0.57 to 2.80 g/100 g sainfoin; the mean degree of polymerisation from 12 to 84; the proportion of prodelphinidin tannins from 53% to 95%, and the proportion of trans-flavanol units from 12% to 34%. A positive correlation was found between PA contents (thiolytic versus acid–butanol degradation; P < 0.001; R2 = 0.49). A negative correlation existed between PA content (thiolysis) and mDP (P < 0.05; R2 = −0.30), which suggested that accessions with high PA contents had smaller PA polymers. Cluster analysis revealed that European accessions clustered into two main groups: Western Europe and Eastern Europe/Asia. In addition, accessions from USA, Canada and Armenia tended to cluster together. Overall, there was broad agreement between tannin clusters and clusters that were based on morphological and agronomic characteristics.
Resumo:
We present molecular dynamics (MD) and slip-springs model simulations of the chain segmental dynamics in entangled linear polymer melts. The time-dependent behavior of the segmental orientation autocorrelation functions and mean-square segmental displacements are analyzed for both flexible and semiflexible chains, with particular attention paid to the scaling relations among these dynamic quantities. Effective combination of the two simulation methods at different coarse-graining levels allows us to explore the chain dynamics for chain lengths ranging from Z ≈ 2 to 90 entanglements. For a given chain length of Z ≈ 15, the time scales accessed span for more than 10 decades, covering all of the interesting relaxation regimes. The obtained time dependence of the monomer mean square displacements, g1(t), is in good agreement with the tube theory predictions. Results on the first- and second-order segmental orientation autocorrelation functions, C1(t) and C2(t), demonstrate a clear power law relationship of C2(t) C1(t)m with m = 3, 2, and 1 in the initial, free Rouse, and entangled (constrained Rouse) regimes, respectively. The return-to-origin hypothesis, which leads to inverse proportionality between the segmental orientation autocorrelation functions and g1(t) in the entangled regime, is convincingly verified by the simulation result of C1(t) g1(t)−1 t–1/4 in the constrained Rouse regime, where for well-entangled chains both C1(t) and g1(t) are rather insensitive to the constraint release effects. However, the second-order correlation function, C2(t), shows much stronger sensitivity to the constraint release effects and experiences a protracted crossover from the free Rouse to entangled regime. This crossover region extends for at least one decade in time longer than that of C1(t). The predicted time scaling behavior of C2(t) t–1/4 is observed in slip-springs simulations only at chain length of 90 entanglements, whereas shorter chains show higher scaling exponents. The reported simulation work can be applied to understand the observations of the NMR experiments.
Resumo:
OBJECTIVE: Staphylococcus aureus can induce platelet aggregation. The rapidity and degree of this correlates with the severity of disseminated intravascular coagulation, and depends on platelet peptidoglycans. Surface-located thiol isomerases play an important role in platelet activation. The staphylococcal extracellular adherence protein (Eap) functions as an adhesin for host plasma proteins. Therefore we tested the effect of Eap on platelets. METHODS AND RESULTS: We found a strong stimulation of the platelet-surface thiol isomerases protein disulfide isomerase, endoplasmic reticulum stress proteins 57 and 72 by Eap. Eap induced thiol isomerase-dependent glycoprotein IIb/IIIa activation, granule secretion, and platelet aggregation. Treatment of platelets with thiol blockers, bacitracin, and anti-protein disulfide isomerase antibody inhibited Eap-induced platelet activation. The effect of Eap on platelets and protein disulfide isomerase activity was completely blocked by glycosaminoglycans. Inhibition by the hydrophobic probe bis(1-anilinonaphthalene 8-sulfonate) suggested the involvement of hydrophobic sites in protein disulfide isomerase and platelet activation by Eap. CONCLUSIONS: In the present study, we found an additional and yet unknown mechanism of platelet activation by a bacterial adhesin, involving stimulation of thiol isomerases. The thiol isomerase stimulatory and prothrombotic features of a microbial secreted protein are probably not restricted to S aureus and Eap. Because many microorganisms are coated with amyloidogenic proteins, it is likely that the observed mechanism is a more general one.
Resumo:
Snaclecs are small non-enzymatic proteins present in viper venoms reported to modulate haemostasis of victims through effects on platelets, vascular endothelial and smooth muscle cells. In this study, we have isolated and functionally characterised a snaclec which we named rhinocetin from the venom of West African gaboon viper, Bitis gabonica rhinoceros. Rhinocetin was shown to comprise α and β chains with the molecular masses of 13.5 and 13kDa respectively. Sequence and immunoblot analysis of rhinocetin confirmed this to be a novel snaclec. Rhinocetin inhibited collagen-stimulated activation of human platelets in dose dependent manner, but displayed no inhibitory effects on glycoprotein VI (collagen receptor) selective agonist, CRP-XL-, ADP- or thrombin-induced platelet activation. Rhinocetin antagonised the binding of monoclonal antibodies against the α2 subunit of integrin α2β1 to platelets and coimmunoprecipitation analysis confirmed integrin α2β1 as a target for this venom protein. Rhinocetin inhibited a range of collagen induced platelet functions such as fibrinogen binding, calcium mobilisation, granule secretion, aggregation and thrombus formation. It also inhibited integrin α2β1 dependent functions of human endothelial cells. Together, our data suggest rhinocetin to be a modulator of integrin α2β1 function and thus may provide valuable insights into the role of this integrin in physiological and pathophysiological scenarios including haemostasis, thrombosis and envenomation.
Resumo:
Platelets in the circulation are triggered by vascular damage to activate, aggregate and form a thrombus that prevents excessive blood loss. Platelet activation is stringently regulated by intracellular signalling cascades, which when activated inappropriately lead to myocardial infarction and stroke. Strategies to address platelet dysfunction have included proteomics approaches which have lead to the discovery of a number of novel regulatory proteins of potential therapeutic value. Global analysis of platelet proteomes may enhance the outcome of these studies by arranging this information in a contextual manner that recapitulates established signalling complexes and predicts novel regulatory processes. Platelet signalling networks have already begun to be exploited with interrogation of protein datasets using in silico methodologies that locate functionally feasible protein clusters for subsequent biochemical validation. Characterization of these biological systems through analysis of spatial and temporal organization of component proteins is developing alongside advances in the proteomics field. This focused review highlights advances in platelet proteomics data mining approaches that complement the emerging systems biology field. We have also highlighted nucleated cell types as key examples that can inform platelet research. Therapeutic translation of these modern approaches to understanding platelet regulatory mechanisms will enable the development of novel anti-thrombotic strategies.
Resumo:
The A1 variant protein of the β-casein family has been implicated in various disease states although much evidence is weak or contradictory. The primary objective was to measure, for the first time, the proportions of the key β-casein variant proteins in UK retail milk over the course of one year. In total, 55 samples of semi-skimmed milk were purchased from five supermarkets over the course of a year and the proportions of the A1, A2, B and C casein variant proteins were measured, using high resolution HPLC-MS. The results showed that β-casein in UK retail milk comprises approximately 0.58, 0.31, 0.07 and 0.03 A2, A1, B and C protein variants, respectively. The proportion of A2 is higher than some early studies would predict although the reasons for this and any implications for health are unclear
Resumo:
Background. Within a therapeutic gene by environment (GxE) framework, we recently demonstrated that variation in the Serotonin Transporter Promoter Polymorphism; 5HTTLPR and marker rs6330 in Nerve Growth Factor gene; NGF is associated with poorer outcomes following cognitive behaviour therapy (CBT) for child anxiety disorders. The aim of this study was to explore one potential means of extending the translational reach of G×E data in a way that may be clinically informative. We describe a ‘risk-index’ approach combining genetic, demographic and clinical data and test its ability to predict diagnostic outcome following CBT in anxious children. Method. DNA and clinical data were collected from 384 children with a primary anxiety disorder undergoing CBT. We tested our risk model in five cross-validation training sets. Results. In predicting treatment outcome, six variables had a minimum mean beta value of 0.5: 5HTTLPR, NGF rs6330, gender, primary anxiety severity, comorbid mood disorder and comorbid externalising disorder. A risk index (range 0-8) constructed from these variables had moderate predictive ability (AUC = .62-.69) in this study. Children scoring high on this index (5-8) were approximately three times as likely to retain their primary anxiety disorder at follow-up as compared to those children scoring 2 or less. Conclusion. Significant genetic, demographic and clinical predictors of outcome following CBT for anxiety-disordered children were identified. Combining these predictors within a risk-index could be used to identify which children are less likely to be diagnosis free following CBT alone or thus require longer or enhanced treatment. The ‘risk-index’ approach represents one means of harnessing the translational potential of G×E data.
Resumo:
Proctolaelaps euserratus Karg, 1994 (Acari, Mesostigmata, Melicharidae), exclusivelly known from the Galápagos Islands till now, is newly reported from decaying matter of animal and human decomposition in various countries of Europe (Slovakia, Spain, United Kingdom). In consequence of high levels of necrophilia, the species is considered to be ecologically unusual among the other melicharids, which are primary associated with other than necrophilic habitats, such as galleries of subcorticolous beetles, bumble bee nests, flowers, etc. Proctolaelaps euserratus is reviewed, morphologically re-described (with first diagnostic characters for males), and considered as a new potential marker for later stages of decomposition, namely butyric fermentation and dry decomposition as classified in modern concepts of forensic acarology.
Resumo:
Protein disulfide isomerase (PDI) derived from intravascular cells is required for thrombus formation. However, it remains unclear whether platelet PDI contributes to the process. Using platelet-specific PDI-deficient mice, we demonstrate that PDI-null platelets have defects in aggregation and ATP secretion induced by thrombin, collagen, and ADP. Such defects were rescued by exogenously-added wild-type but not mutant PDI, indicating that the isomerase activity of platelet surface PDI is critical for the regulatory effect. PDI-deficient platelets expressed increased levels of intracellular ERp57 and ERp72. Platelet PDI regulated αIIbβ3 integrin activation but not P-selectin exposure, Ca2+ mobilization, β3-talin interaction, and platelet spreading on immobilized fibrinogen. Inhibition of ERp57 further diminished αIIbβ3 integrin activation, aggregation and ATP secretion of activated PDI-deficient platelets, suggesting distinct roles of PDI and ERp57 in platelet functions. We found that platelet PDI is important for thrombus formation on collagen-coated surfaces under arteriolar shear. Intravital microscopy demonstrates that platelet PDI is important for platelet accumulation but not initial adhesion and fibrin generation following laser-induced arteriolar injury. Tail bleeding time and blood loss in platelet-specific PDI-deficient mice were not significantly increased. Our results provide important evidence that platelet PDI is essential for thrombus formation but not for hemostasis in mice.