25 resultados para Generalised Linear Modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the heat, linear Schrodinger and linear KdV equations in the domain l(t) < x < ∞, 0 < t < T, with prescribed initial and boundary conditions and with l(t) a given differentiable function. For the first two equations, we show that the unknown Neumann or Dirichlet boundary value can be computed as the solution of a linear Volterra integral equation with an explicit weakly singular kernel. This integral equation can be derived from the formal Fourier integral representation of the solution. For the linear KdV equation we show that the two unknown boundary values can be computed as the solution of a system of linear Volterra integral equations with explicit weakly singular kernels. The derivation in this case makes crucial use of analyticity and certain invariance properties in the complex spectral plane. The above Volterra equations are shown to admit a unique solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The validity of approximating radiative heating rates in the middle atmosphere by a local linear relaxation to a reference temperature state (i.e., ‘‘Newtonian cooling’’) is investigated. Using radiative heating rate and temperature output from a chemistry–climate model with realistic spatiotemporal variability and realistic chemical and radiative parameterizations, it is found that a linear regressionmodel can capture more than 80% of the variance in longwave heating rates throughout most of the stratosphere and mesosphere, provided that the damping rate is allowed to vary with height, latitude, and season. The linear model describes departures from the climatological mean, not from radiative equilibrium. Photochemical damping rates in the upper stratosphere are similarly diagnosed. Threeimportant exceptions, however, are found.The approximation of linearity breaks down near the edges of the polar vortices in both hemispheres. This nonlinearity can be well captured by including a quadratic term. The use of a scale-independentdamping rate is not well justified in the lower tropical stratosphere because of the presence of a broad spectrum of vertical scales. The local assumption fails entirely during the breakup of the Antarctic vortex, where large fluctuations in temperature near the top of the vortex influence longwave heating rates within the quiescent region below. These results are relevant for mechanistic modeling studies of the middle atmosphere, particularly those investigating the final Antarctic warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in modeling electrocortical activity. In particular, we are able to treat “patchy” connections, whereby a homogeneous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a “lattice-directed” traveling wave predicted by a linear instability analysis is confirmed by the numerical simulation of an appropriate set of coupled PDEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known anatomical constraints and predict mean firing rates and power spectra typically encountered in human subjects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane. Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an outlook on future fits to experimental data is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] Sea ice failure under low-confinement compression is modeled with a linear Coulombic criterion that can describe either fractural failure or frictional granular yield along slip lines. To study the effect of anisotropy we consider a simplified anisotropic sea ice model where the sea ice thickness depends on orientation. Accommodation of arbitrary deformation requires failure along at least two intersecting slip lines, which are determined by finding two maxima of the yield criterion. Due to the anisotropy these slip lines generally differ from the standard, Coulombic slip lines that are symmetrically positioned around the compression direction, and therefore different tractions along these slip lines give rise to a nonsymmetric stress tensor. We assume that the skewsymmetric part of this tensor is counterbalanced by an additional elastic stress in the sea ice field that suppresses floe spin. We consider the case of two leads initially formed in an isotropic ice cover under compression, and address the question of whether these leads will remain active or new slip lines will form under a rotation of the principal compression direction. Decoupled and coupled models of leads are considered and it is shown that for this particular case they both predict lead reactivation in almost the same way. The coupled model must, however, be used in determining the stress as the decoupled model does not resolve the stress asymmetry properly when failure occurs in one lead and at a new slip line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The East China Sea is a hot area for typhoon waves to occur. A wave spectra assimilation model has been developed to predict the typhoon wave more accurately and operationally. This is the first time where wave data from Taiwan have been used to predict typhoon wave along the mainland China coast. The two-dimensional spectra observed in Taiwan northeast coast modify the wave field output by SWAN model through the technology of optimal interpolation (OI) scheme. The wind field correction is not involved as it contributes less than a quarter of the correction achieved by assimilation of waves. The initialization issue for assimilation is discussed. A linear evolution law for noise in the wave field is derived from the SWAN governing equations. A two-dimensional digital low-pass filter is used to obtain the initialized wave fields. The data assimilation model is optimized during the typhoon Sinlaku. During typhoons Krosa and Morakot, data assimilation significantly improves the low frequency wave energy and wave propagation direction in Taiwan coast. For the far-field region, the assimilation model shows an expected ability of improving typhoon wave forecast as well, as data assimilation enhances the low frequency wave energy. The proportion of positive assimilation indexes is over 81% for all the periods of comparison. The paper also finds that the impact of data assimilation on the far-field region depends on the state of the typhoon developing and the swell propagation direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.