21 resultados para Galilean covariant formalism
Resumo:
We discuss several methods of calculating the DIS structure functions F2(x,Q2) based on BFKL-type small x resummations. Taking into account new HERA data ranging down to small xand low Q2, the pure leading order BFKL-based approach is excluded. Other methods based on high energy factorization are closer to conventional renormalization group equations. Despite several difficulties and ambiguities in combining the renormalization group equations with small x resummed terms, we find that a fit to the current data is hardly feasible, since the data in the low Q2 region are not as steep as the BFKL formalism predicts. Thus we conclude that deviations from the (successful) renormalization group approach towards summing up logarithms in 1/x are disfavoured by experiment.
Resumo:
Understanding how and why the capability of one set of business resources, its structural arrangements and mechanisms compared to another works can provide competitive advantage in terms of new business processes and product and service development. However, most business models of capability are descriptive and lack formal modelling language to qualitatively and quantifiably compare capabilities, Gibson’s theory of affordance, the potential for action, provides a formal basis for a more robust and quantitative model, but most formal affordance models are complex and abstract and lack support for real-world applications. We aim to understand the ‘how’ and ‘why’ of business capability, by developing a quantitative and qualitative model that underpins earlier work on Capability-Affordance Modelling – CAM. This paper integrates an affordance based capability model and the formalism of Coloured Petri Nets to develop a simulation model. Using the model, we show how capability depends on the space time path of interacting resources, the mechanism of transition and specific critical affordance factors relating to the values of the variables for resources, people and physical objects. We show how the model can identify the capabilities of resources to enable the capability to inject a drug and anaesthetise a patient.
Resumo:
A parameterization of mesoscale eddies in coarse-resolution ocean general circulation models (GCM) is formulated and implemented using a residual-mean formalism. In that framework, mean buoyancy is advected by the residual velocity (the sum of the Eulerian and eddy-induced velocities) and modified by a residual flux which accounts for the diabatic effects of mesoscale eddies. The residual velocity is obtained by stepping forward a residual-mean momentum equation in which eddy stresses appear as forcing terms. Study of the spatial distribution of eddy stresses, derived by using them as control parameters to ‘‘fit’’ the residual-mean model to observations, supports the idea that eddy stresses can be likened to a vertical down-gradient flux of momentum with a coefficient which is constant in the vertical. The residual eddy flux is set to zero in the ocean interior, where mesoscale eddies are assumed to be quasi-adiabatic, but is parameterized by a horizontal down-gradient diffusivity near the surface where eddies develop a diabatic component as they stir properties horizontally across steep isopycnals. The residual-mean model is implemented and tested in the MIT general circulation model. It is shown that the resulting model (1) has a climatology that is superior to that obtained using the Gent and McWilliams parameterization scheme with a spatially uniform diffusivity and (2) allows one to significantly reduce the (spurious) horizontal viscosity used in coarse resolution GCMs.
Resumo:
A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered for the full system. As examples of application, the how in elastic vessels is simulated with the pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady how are in good agreement with the analytical prediction, while the simulation results for pulsative how agree with the experimental observation of the aortic flows qualitatively. The approach has potential application in the study of the complex fluid systems such as the suspension system as well as the arterial blood flow.
Resumo:
A new formal approach for representation of polarization states of coherent and partially coherent electromagnetic plane waves is presented. Its basis is a purely geometric construction for the normalised complex-analytic coherent wave as a generating line in the sphere of wave directions, and whose Stokes vector is determined by the intersection with the conjugate generating line. The Poincare sphere is now located in physical space, simply a coordination of the wave sphere, its axis aligned with the wave vector. Algebraically, the generators representing coherent states are represented by spinors, and this is made consistent with the spinor-tensor representation of electromagnetic theory by means of an explicit reference spinor we call the phase flag. As a faithful unified geometric representation, the new model provides improved formal tools for resolving many of the geometric difficulties and ambiguities that arise in the traditional formalism.
Resumo:
The congruential rule advanced by Graves for polarization basis transformation of the radar backscatter matrix is now often misinterpreted as an example of consimilarity transformation. However, consimilarity transformations imply a physically unrealistic antilinear time-reversal operation. This is just one of the approaches found in literature to the description of transformations where the role of conjugation has been misunderstood. In this paper, the different approaches are examined in particular in respect to the role of conjugation. In order to justify and correctly derive the congruential rule for polarization basis transformation and properly place the role of conjugation, the origin of the problem is traced back to the derivation of the antenna height from the transmitted field. In fact, careful consideration of the role played by the Green’s dyadic operator relating the antenna height to the transmitted field shows that, under general unitary basis transformation, it is not justified to assume a scalar relationship between them. Invariance of the voltage equation shows that antenna states and wave states must in fact lie in dual spaces, a distinction not captured in conventional Jones vector formalism. Introducing spinor formalism, and with the use of an alternate spin frame for the transmitted field a mathematically consistent implementation of the directional wave formalism is obtained. Examples are given comparing the wider generality of the congruential rule in both active and passive transformations with the consimilarity rule.