45 resultados para Gale Cup
Resumo:
Here we report the crystal structure of the DNA heptanucleotide sequence d(GCATGCT) determined to a resolution of 1.1 Angstrom. The sequence folds into a complementary loop structure generating several unusual base pairings and is stabilised through cobalt hexammine and highly defined water sites. The single stranded loop is bound together through the G(N2)-C(O2) intra-strand H-bonds for the available G/C residues, which form further Watson-Crick pairings to a complementary sequence, through 2-fold symmetry, generating a pair of non-planar quadruplexes at the heart of the structure. Further, four adenine residues stack in pairs at one end, H-bonding through their N7-N6 positions, and are additionally stabilised through two highly conserved water positions at the structural terminus. This conformation is achieved through the rotation of the central thymine base at the pinnacle of the loop structure, where it stacks with an adjacent thymine residue within the lattice. The crystal packing yields two halved biological units, each related across a 2-fold symmetry axis spanning a cobalt hexammine residue between them, which stabilises the quadruplex structure through H-bonds to the phosphate oxygens and localised hydration.
Resumo:
The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5–5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.
Resumo:
This paper investigates the robustness of a hybrid analog/digital feedback active noise cancellation (ANC) headset system. The digital ANC systems with the filtered-x least-mean-square (FXLMS) algorithm require accurate estimation of the secondary path for the stability and convergence of the algorithm. This demands a great challenge for the ANC headset design because the secondary path may fluctuate dramatically such as when the user adjusts the position of the ear-cup. In this paper, we analytically show that adding an analog feedback loop into the digital ANC systems can effectively reduce the plant fluctuation, thus achieving a more robust system. The method for designing the analog controller is highlighted. A practical hybrid analog/digital feedback ANC headset has been built and used to conduct experiments, and the experimental results show that the hybrid headset system is more robust under large plant fluctuation, and has achieved satisfactory noise cancellation for both narrowband and broadband noises.
Resumo:
A radiocarbon-dated multiproxy palaeoenvironmental record from the Lower Thames Valley at Hornchurch Marshes has provided a reconstruction of the timing and nature of vegetation succession against a background of Holocene climate change, relative sea level movement and human activities. The investigation recorded widespread peat formation between c. 6300 and 3900 cal. yr BP (marine ‘regression’), succeeded by evidence for marine incursion. The multiproxy analyses of these sediments, comprising pollen, Coleoptera, diatoms, and plant and wood macrofossils, have indicated significant changes in both the wetland and dryland environment, including the establishment of Alnus (Alder) carr woodland, and the decline of both Ulmus (Elm; c. 5740 cal. yr BP) and Tilia (Lime; c. 5600 cal. yr BP, and 4160–3710 cal. yr BP). The beetle faunas from the peat also suggest a thermal climate similar to that of the present day. At c. 4900 cal. yr BP, Taxus (L.; Yew) woodland colonised the peatland forming a plant community that has no known modern analogue in the UK. The precise reason, or reasons, for this event remain unclear, although changes in peatland hydrology seem most likely. The growth of Taxus on peatland not only has considerable importance for our knowledge of the vegetation history of southeast England, and NW Europe generally, but also has wider implications for the interpretation of Holocene palaeobotanical records. At c. 3900 cal. yr BP, Taxus declined on the peatland surface during a period of major hydrological change (marine incursion), an event also strongly associated with the decline of dryland woodland taxa, including Tilia and Quercus, and the appearance of anthropogenic indicators.
Resumo:
DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.
Resumo:
Food security is one of this century’s key global challenges. By 2050 the world will require increased crop production in order to feed its predicted 9 billion people. This must be done in the face of changing consumption patterns, the impacts of climate change and the growing scarcity of water and land. Crop production methods will also have to sustain the environment, preserve natural resources and support livelihoods of farmers and rural populations around the world. There is a pressing need for the ‘sustainable intensifi cation’ of global agriculture in which yields are increased without adverse environmental impact and without the cultivation of more land. Addressing the need to secure a food supply for the whole world requires an urgent international effort with a clear sense of long-term challenges and possibilities. Biological science, especially publicly funded science, must play a vital role in the sustainable intensifi cation of food crop production. The UK has a responsibility and the capacity to take a leading role in providing a range of scientifi c solutions to mitigate potential food shortages. This will require signifi cant funding of cross-disciplinary science for food security. The constraints on food crop production are well understood, but differ widely across regions. The availability of water and good soils are major limiting factors. Signifi cant losses in crop yields occur due to pests, diseases and weed competition. The effects of climate change will further exacerbate the stresses on crop plants, potentially leading to dramatic yield reductions. Maintaining and enhancing the diversity of crop genetic resources is vital to facilitate crop breeding and thereby enhance the resilience of food crop production. Addressing these constraints requires technologies and approaches that are underpinned by good science. Some of these technologies build on existing knowledge, while others are completely radical approaches, drawing on genomics and high-throughput analysis. Novel research methods have the potential to contribute to food crop production through both genetic improvement of crops and new crop and soil management practices. Genetic improvements to crops can occur through breeding or genetic modifi cation to introduce a range of desirable traits. The application of genetic methods has the potential to refi ne existing crops and provide incremental improvements. These methods also have the potential to introduce radical and highly signifi cant improvements to crops by increasing photosynthetic effi ciency, reducing the need for nitrogen or other fertilisers and unlocking some of the unrealised potential of crop genomes. The science of crop management and agricultural practice also needs to be given particular emphasis as part of a food security grand challenge. These approaches can address key constraints in existing crop varieties and can be applied widely. Current approaches to maximising production within agricultural systems are unsustainable; new methodologies that utilise all elements of the agricultural system are needed, including better soil management and enhancement and exploitation of populations of benefi cial soil microbes. Agronomy, soil science and agroecology—the relevant sciences—have been neglected in recent years. Past debates about the use of new technologies for agriculture have tended to adopt an either/or approach, emphasising the merits of particular agricultural systems or technological approaches and the downsides of others. This has been seen most obviously with respect to genetically modifi ed (GM) crops, the use of pesticides and the arguments for and against organic modes of production. These debates have failed to acknowledge that there is no technological panacea for the global challenge of sustainable and secure global food production. There will always be trade-offs and local complexities. This report considers both new crop varieties and appropriate agroecological crop and soil management practices and adopts an inclusive approach. No techniques or technologies should be ruled out. Global agriculture demands a diversity of approaches, specific to crops, localities, cultures and other circumstances. Such diversity demands that the breadth of relevant scientific enquiry is equally diverse, and that science needs to be combined with social, economic and political perspectives. In addition to supporting high-quality science, the UK needs to maintain and build its capacity to innovate, in collaboration with international and national research centres. UK scientists and agronomists have in the past played a leading role in disciplines relevant to agriculture, but training in agricultural sciences and related topics has recently suffered from a lack of policy attention and support. Agricultural extension services, connecting farmers with new innovations, have been similarly neglected in the UK and elsewhere. There is a major need to review the support for and provision of extension services, particularly in developing countries. The governance of innovation for agriculture needs to maximise opportunities for increasing production, while at the same time protecting societies, economies and the environment from negative side effects. Regulatory systems need to improve their assessment of benefits. Horizon scanning will ensure proactive consideration of technological options by governments. Assessment of benefi ts, risks and uncertainties should be seen broadly, and should include the wider impacts of new technologies and practices on economies and societies. Public and stakeholder dialogue—with NGOs, scientists and farmers in particular—needs to be a part of all governance frameworks.
Resumo:
Greater levels of conscientiousness have been associated with lower levels of negative affect. We focus on one mechanism through which conscientiousness may decrease negative affect: effective emotion regulation, as reflected by greater recovery from negative stimuli. In 273 adults who were 35 - 85 years old, we collected self-report measures of personality including conscientiousness and its self-control facet, followed on average 2 years later by psychophysiological measures of emotional reactivity and recovery. Among middle-aged adults (35 - 65 years old), the measures of conscientiousness and self-control predicted greater recovery from, but not reactivity to, negative emotional stimuli. The effect of conscientiousness and self-control on recovery was not driven by other personality variables or by greater task adherence on the part of high conscientiousness individuals. In addition, the effect was specific to negative emotional stimuli and did not hold for neutral or positive emotional stimuli.