24 resultados para GOAL PROGRAMMING APPROACH


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Central Brazil, the long-term, sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from. degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, 'asset value of cattle (representing cattle ownership and 'present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring caring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics,and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple 'no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new method for the inclusion of nonlinear demand and supply relationships within a linear programming model. An existing method for this purpose is described first and its shortcomings are pointed out before showing how the new approach overcomes those difficulties and how it provides a more accurate and 'smooth' (rather than a kinked) approximation of the nonlinear functions as well as dealing with equilibrium under perfect competition instead of handling just the monopolistic situation. The workings of the proposed method are illustrated by extending a previously available sectoral model for the UK agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present research, a 3 × 2 model of achievement goals is proposed and tested. The model is rooted in the definition and valence components of competence, and encompasses 6 goal constructs: task-approach, task-avoidance, self-approach, self-avoidance, other-approach, and other-avoidance. The results from 2 studies provided strong support for the proposed model, most notably the need to separate task-based and self-based goals. Studies 1 and 2 yielded data establishing the 3 × 2 structure of achievement goals, and Study 2 documented the antecedents and consequences of each of the goals in the 3 × 2 model. Terminological, conceptual, and applied issues pertaining to the 3 × 2 model are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present research, we conducted 4 studies designed to examine the hypothesis that perceived competence moderates the relation between performance-approach and performance-avoidance goals. Each study yielded supportive data, indicating that the correlation between the 2 goals is lower when perceived competence is high. This pattern was observed at the between- and within-subject level of analysis, with correlational and experimental methods and using both standard and novel achievement goal assessments, multiple operationalizations of perceived competence, and several different types of focal tasks. The findings from this research contribute to the achievement goal literature on theoretical, applied, and methodological fronts and highlight the importance of and need for additional empirical work in this area. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the literature on achievement goals, performance-approach goals (striving to do better than others) and performance-avoidance goals (striving to avoid doing worse than others) tend to exhibit a moderate to high correlation, raising questions about whether the 2 goals represent distinct constructs. In the current article, we sought to examine the separability of these 2 goals using a broad factor-analytic approach that attended to issues that have been overlooked or underexamined in prior research. Five studies provided strong evidence for the separation of these 2 goal constructs: Separation was observed not only with exploratory factor analysis across different age groups and countries (Studies 1a and 1b) but also with change analysis (Study 2), ipsative factor analysis (Study 3), within-person analysis (Study 4), and behavioral genetics analysis (Study 5). We conclude by discussing the implications of the present research for the achievement goal literature, as well as the psychological literature in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities in a broad range of application domains, such as health care, emergency management, fitness and behaviour surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates a Cloud computing platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid development of community BSN applications. This work describes the general architecture of the proposed approach and presents a case study for the real-time monitoring and analysis of cardiac data streams of many individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The University of Reading’s first Massive Open Online Course (MOOC) “Begin Programming: Build your first mobile game” (#FLMobiGame) was offered in Autumn 2013 on the FutureLearn platform. This course used a simple Android game framework to present basic programming concepts to complete beginners. The course attracted wide interest from all age groups. The course presented opportunities and challenges to both participants and educators. While some participants had difficulties accessing content some others had trouble grasping the concepts and applying them in a real program. Managing forums was cumbersome with the limited facilities supported by the Beta-platform. A healthy community was formed around the course with the support of social media. The case study reported here is part of an ongoing research programme exploring participants’ MOOC engagement and experience using a grounded, ethnographical approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined how achievement goals affect retrieval-induced forgetting. Researchers have suggested that mastery-approach goals (i.e., developing one’s own competence) promote a relational encoding, whereas performance-approach goals (i.e., demonstrating one’s ability in comparison to others) promote item-specific encoding. These different encoding processes may affect the degree to which participants integrate the exemplars within a category and, as a result, we expected that retrieval-induced forgetting may be reduced or eliminated under mastery-approach goals. Three experiments were conducted using a retrieval-practice paradigm with different stimuli, where participants’ achievement goals were manipulated through brief written instructions. A meta-analysis that synthesized the results of the three experiments showed that retrieval-induced forgetting was not statistically significant in the mastery-approach goal condition, whereas it was statistically significant in the performance-approach goal condition. These results suggest that mastery-approach goals eliminate retrieval-induced forgetting, but performance-approach goals do not, demonstrating that motivation factors can influence inhibition and forgetting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of classification rules from previously unseen examples is one of the most important data mining tasks in science as well as commercial applications. In order to reduce the influence of noise in the data, ensemble learners are often applied. However, most ensemble learners are based on decision tree classifiers which are affected by noise. The Random Prism classifier has recently been proposed as an alternative to the popular Random Forests classifier, which is based on decision trees. Random Prism is based on the Prism family of algorithms, which is more robust to noise. However, like most ensemble classification approaches, Random Prism also does not scale well on large training data. This paper presents a thorough discussion of Random Prism and a recently proposed parallel version of it called Parallel Random Prism. Parallel Random Prism is based on the MapReduce programming paradigm. The paper provides, for the first time, novel theoretical analysis of the proposed technique and in-depth experimental study that show that Parallel Random Prism scales well on a large number of training examples, a large number of data features and a large number of processors. Expressiveness of decision rules that our technique produces makes it a natural choice for Big Data applications where informed decision making increases the user’s trust in the system.