34 resultados para GLUCOSE METABOLISM


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic background may interact with habitual dietary fat composition, and affect development of the metabolic syndrome (MetS). The phosphoenolpyruvate carboxykinase gene (PCK1) plays a significant role regulating glucose metabolism, and fatty acids are key metabolic regulators, which interact with transcription factors and influence glucose metabolism. We explored genetic variability at the PCK1 gene locus in relation to degree of insulin resistance and plasma fatty acid levels in MetS subjects. Moreover, we analyzed the PCK1 gene expression in the adipose tissue of a subgroup of MetS subjects according to the PCK1 genetic variants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Wholegrain (WG) consumption is associated with reduced risk of cardiovascular disease, but clinical data on inflammation and immune function is either conflicting or limited. The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on markers of inflammation and glucose metabolism and on phenotypic and functional aspects of the immune system, in healthy, middle-aged adults with low habitual WG intake. Methods Subjects consumed a diet high in WG (> 80 g/d) or low in WG (< 16 g/d, refined grain diet) in a crossover study, with 6-week intervention periods, separated by a 4-week washout. Adherence to the dietary regimes was achieved by dietary advice and provision of a range of food products, with compliance verified through analysis of plasma alkylresorcinols (ARs). Results On the WG intervention, WG consumption reached 168 g/d (P < 0.001), accompanied by an increase in plasma ARs (P < 0.001) and fibre intake (P < 0.001), without affecting other aspects of dietary intake. On the WG arm there were trends for lower ex vivo activation of CD4+ T cells and circulating concentrations of IL-10, C-reactive protein, C-peptide, insulin and plasminogen activator inhibitor-1. The percentage of CD4+ central memory T cells and circulating levels of adipsin tended to increase during the WG intervention. Conclusions Despite the dramatic increase in WG consumption, there were no effects on phenotypic or functional immune parameters, markers of inflammation or metabolic markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75.)d]) every 2 h without (27.0 g of N/kg of DM) and. with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion Of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic 02 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal Of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood flow and net nutrient fluxes for portal-drained viscera (PDV) and liver ( total splanchnic tissues) were measured at 19 and 9 d prepartum and at 11, 21, 33, and 83 d in milk ( DIM) in 5 multiparous Holstein-Friesian cows. Cows were fed a grass silage-based gestation ration initially and a corn silage-based lactation ration peripartum and postpartum. Meals were fed at 8-h intervals and hourly (n = 8) measures of splanchnic metabolism were started before ( 0730 h and 0830 h) feeding at 0830 h. Dry matter intakes (DMI) at 19 and 9 d prepartum were not different. Metabolism changes measured from 19 to 9 d prepartum were lower arterial insulin and acetate, higher arterial nonesterified fatty acids and increased net liver removal of glycerol. After calving, PDV and liver blood flow and oxygen consumption more than doubled as DMI and milk yield increased, but 85 and 93% of the respective increases in PDV and liver blood flow at 83 DIM had occurred by 11 DIM. Therefore, factors additional to DMI must also contribute to increased blood flow in early lactation. Most postpartum changes in net PDV and liver metabolism could be attributed to increases in DMI and digestion or increased milk yield and tissue energy loss. Glucose release was increasingly greater than calculated requirements as DIM increased, presumably as tissue energy balance increased. Potential contributions of lactate, alanine, and glycerol to liver glucose synthesis were greatest at 11 DIM but decreased by 83 DIM. Excluding alanine, there was no evidence of an increased contribution of amino acids to liver glucose synthesis is required in early lactation. Increased net liver removal of propionate (69%), lactate (20%), alanine (8%), and glycerol (4%) can account for increased liver glucose release in transition cows from 9 d before to 11 d after calving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of feeding supplemental biotin on net absorption and metabolism of nutrients by the portal-drained viscera (PDV; the gut, pancreas, spleen and associated fat) and liver of lactating dairy cows was measured. Three cows in early to mid-lactation catheterised for measurements of net nutrient absorption and metabolism by the PDV and liver were fed a total-mixed ration with or without supplemental biotin at 20 mg/day using a switch-back design (ABA v. BAB) with three 2-week periods. There were no effects of feeding biotin on dry matter intake (22.2 kg/day), milk yield (29.5 kg/day) or milk composition. There was also no effect of feeding biotin on net release of glucose by the liver, net liver removal of glucose precursors (propionate, alanine, lactate) or net liver release of p-hydroxybutyrate. Feeding biotin increased net PDV release of ammonia. Reasons for the response are not certain, but a numerical increase in net PDV release of acetate suggests that rumen or hindgut fermentation was altered. Results of the present study do not support the hypothesis that supplemental biotin increases liver glucose production in lactating dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isoflavone genistein is found predominantly in soyabeans and is thought to possess various potent biological properties, including anticarcinogenic effects. Studies have shown that genistein is extensively degraded by the human gut microflora, presumably with a loss of its anti-carcinogenic action. The aim of the present study was to investigate the potential of a prebiotic to divert bacterial metabolism away from genistein breakdown: this may be of benefit to the host. Faecal samples were obtained from healthy volunteers and fermented in the presence of a source of soyabean isoflavones (Novasoy(TM) (10 g/l); ADM Neutraceuticals, Erith, Kent, UK). Bacterial genera of the human gut were enumerated using selective agars and genistein was quantified by HPLC. The experiment was repeated with the addition of glucose (10 g/l) or fructo-oligosaccharide (10 g/l; FOS) to the fermentation medium. The results showed most notably that counts of Bifidobacterium spp. and Lactobacillus spp. were significantly increased (P<0.05 and P<0.01 respectively) under steady-state conditions in the presence of FOS. Counts of Bacteroides spp. and Clostridium spp. were, however, both significantly reduced (P<0.05) during the fermentation. A decline in genistein concentration by about 52 and 56% over the 120h culture period was observed with the addition of glucose or FOS to the basal medium (P<0.01), compared with about 91% loss of genistein in the vessels containing Novasoy(TM) (ADM Neutraceuticals) only. Similar trends were obtained using a three-stage chemostat (gut model), in which once again the degradation of genistein was about 22% in vessel one, about 24% in vessel two and about 26% in vessel three in the presence of FOS, compared with a degradation of genistein of about 67% in vessel one, about 95% in vessel two and about 93% in vessel three in the gut model containing Novasoy(TM) (ADM Neutraceuticals) only. The present study has shown that the addition of excess substrate appeared to preserve genistein in vitro. In particular, the use of FOS not only augmented this effect, but also conferred an additional benefit in selectively increasing numbers of purportedly beneficial bacteria such as bifidobacteria and lactobacilli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-chain fructooligosaccharides (scFOS) and other prebiotics are used to selectively stimulate the growth and activity of lactobacilli and bifidobacteria in the colon. However, there is little information on the mechanisms whereby prebiotics exert their specific effects upon such microorganisms. To study the genomic basis of scFOS metabolism in Lactobacillus plantarum WCFS1, two-color microarrays were used to screen for differentially expressed genes when grown on scFOS compared to glucose (control). A significant up-regulation (8- to 60-fold) was observed with a set of only five genes located in a single locus and predicted to encode a sucrose phosphoenolpyruvate transport system (PTS), a beta-fructofuranosidase, a fructokinase, an alpha-glucosidase, and a sucrose operon repressor. Several other genes were slightly overexpressed, including pyruvate dehydrogenase. For the latter, no detectable activity in L. plantarum under various growth conditions has been previously reported. A mannose-PTS likely to encode glucose uptake was 50-fold down-regulated as well as, to a lower extent, other PTSs. Chemical analysis of the different moieties of scFOS that were depleted in the growth medium revealed that the trisaccharide 1-kestose present in scFOS was preferentially utilized, in comparison with the tetrasaccharide nystose and the pentasaccharide fructofuranosylnystose. The main end products of scFOS fermentation were lactate and acetate. This is the first example in lactobacilli of the association of a sucrose PTS and a beta-fructofuranosidase that could be used for scFOS degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our aim was to determine whether meal fatty acids influence insulin and glucose responses to mixed meals and whether these effects can be explained by variations in postprandial NEFA and Apo, which regulate the metabolism of triacylglycerol-rich lipoproteins (Apo C and E). A single-blind crossover study examined the effects of single meals enriched in saturated fatty acids SFA), n-6 PUFA and MUFA on plasma metabolite and insulin responses. The triacylglycerol response following the PUFA meal showed a lower net incremental area under the curve than following the SFA and MUFA meals (P < 0.007). Compared with the SFA meal, the PUFA meal showed a lower net incremental area under the curve for the NEFA response from initial suppression to the end of the postprandial period (180-480 min; P < 0.02), and both PUFA and MUFA showed a lower net incremental glucose response (P < 0.02), although insulin concentrations were similar between meals. The pattern of the Apo E response was also different following the SFA meal (P < 0.02). There was a significant association between the net incremental NEFA (180-480 min) and glucose response (r(s)=0.409, P=0.025), and in multiple regression analysis the NEFA response accounted for 24 % of the variation in glucose response. Meal SFA have adverse effects on the postprandial glucose response that may be due to greater elevations in NEFA arising from differences in the metabolism of SFA- v. PUFA- and MUFA-rich lipoproteins. Elevated Apo E responses to high-SFA meals may have important implications for the hepatic metabolism of triacylglycerol-rich lipoproteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate relationships between body fat and its distribution and carbohydrate and lipid tolerance using statistical comparisons in post-menopausal women. DESIGN: Sequential meal, postprandial study (600 min) which included a mixed standard breakfast (30 g fat) and lunch (44 g fat) given at 0 and 270 min, respectively, after an overnight fast. SUBJECTS: Twenty-eight post-menopausal women with a diverse range of body weight (body mass index (BMI), mean 27.2, range 20.5-38.8 kg/m2) and abdominal fat deposition (waist, mean 86.4, range 63.5-124.0 cm). Women with BMI <18 or >37 kg/m2, age>80 y and taking hormone replacement therapy (HRT) were excluded. MEASUREMENTS: Anthropometric measurements were performed to assess total and regional fat deposits. The concentrations of plasma total cholesterol, high density lipoprotein (HDL) cholesterol, triacylglycerol (TAG), glucose, insulin (ins), non-esterified fatty acids (NEFA) and apolipoprotein (apo) B-48 were analysed in plasma collected at baseline (fasted state) and at 13 postprandial time points for a 600 min period. RESULTS: Insulin concentrations in the fasted and fed state were significantly correlated with all measures of adiposity (BMI, waist, waist-hip ratio (W/H), waist-height ratio (W/Ht) and sum of skinfold thickness (SSk)). After controlling for BMI, waist remained significantly and positively associated with fasted insulin (r=0.559) with waist contributing 53% to the variability after multiple regression analysis. After controlling for waist, BMI remained significantly correlated with postprandial (IAUC) insulin (r=0.535) contributing 66% of the variability of this measurement. No association was found between any measures of adiposity and glucose concentrations, although insulin concentration in relation to glucose concentration (glucose-insulin ratio) was significantly negatively correlated with all measures of adiposity. A significant positive correlation was found between fasted TAG and BMI (r=0.416), waist (r=0.393) and Ssk (r=0.457) and postprandial (AUC) TAG with BMI (r=0.385) and Ssk (r=0.406). A significantly higher postprandial apolipoprotein (apo) B-48 response was observed in those women with high BMI (>27 kg/m2). Fasting levels of NEFA were significantly and positively correlated with all measures of adiposity (except W/H). No association was found between cholesterol containing particles and any measure of adiposity. CONCLUSION: Hyperinsulinaemia associated with increasing body fat and central fat distribution is associated with normal glucose but not TAG or NEFA concentrations in postmenopausal women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological evidence shows that a diet high in monounsaturated fatty acids (MUFA) but low in saturated fatty acids (SFA) is associated with reduced risk of CHD. The hypocholesterolaemic effect of MUFA is known but there has been little research on the effect of test meal MUFA and SFA composition on postprandial lipid metabolism. The present study investigated the effect of meals containing different proportions of MUFA and SFA on postprandial triacylglycerol and non-esterified fatty acid (NEFA) metabolism. Thirty healthy male volunteers consumed three meals containing equal amounts of fat (40 g), but different proportions of MUFA (12, 17 and 24% energy) in random order. Postprandial plasma triacylglycerol, apolipoprotein B-48, cholesterol, HDL-cholesterol, glucose and insulin concentrations and lipoprotein lipase (EC 3.1.1.34) activity were not significantly different following the three meals which varied in their levels of SFA and MUFA. There was a significant difference in the postprandial NEFA response between meals. The incremental area under the curve of postprandial plasma NEFA concentrations was significantly (P = 0.03) lower following the high-MUFA meal. Regression analysis showed that the non-significant difference in fasting NEFA concentrations was the most important factor determining difference between meals, and that the test meal MUFA content had only a minor effect. In conclusion, varying the levels of MUFA and SFA in test meals has little or no effect on postprandial lipid metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A longitudinal study of carbohydrate and lipid metabolism in normal pregnant volunteers demonstrated distinct alterations in maternal fuel utilization as pregnancy progresses. Glucose uptake into maternal adipose tissue and plasma glucose levels were significantly reduced in late pregnancy compared to early pregnancy and post-partum values. Plasma fatty acids, glycerol and ketone levels were elevated in late pregnancy. This confirms the concept of the third trimester as a catabolic phase within the maternal system, and provides support for the view that the insulin resistance of pregnancy may be a compensatory response to overcome the inhibitive effects of metabolites such as fatty acids on peripheral uptake of glucose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While selenium (Se) is an essential micronutrient for humans, epidemiological studies have raised concern that supranutritional Se intake may increase the risk to develop Type 2 diabetes mellitus (T2DM). We aimed to determine the impact of Se at a dose and source frequently ingested by humans on markers of insulin sensitivity and signalling. Male pigs were fed either a Se-adequate (0.17 mg Se/kg) or a Se-supranutritional (0.50 mg Se/kg; high-Se) diet. After 16 weeks of intervention, fasting plasma insulin and cholesterol levels were non-significantly increased in the high-Se pigs, whereas fasting glucose concentrations did not differ between the two groups. In skeletal muscle of high-Se pigs, glutathione peroxidase activity was increased, gene expression of forkhead box O1 transcription factor and peroxisomal proliferator-activated receptor- coactivator 1 were increased and gene expression of the glycolytic enzyme pyruvate kinase was decreased. In visceral adipose tissue of high-Se pigs, mRNA levels of sterol regulatory element-binding transcription factor 1 were increased, and the phosphorylation of Akt, AMP-activated kinase and mitogen-activated protein kinases was affected. In conclusion, dietary Se oversupply may affect expression and activity of proteins involved in energy metabolism in major insulin target tissues, though this is probably not sufficient to induce diabetes.