28 resultados para GHZ


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel technique for the noninvasive continuous measurement of leaf water content is presented. The technique is based on transmission measurements of terahertz radiation with a null-balance quasi-optical transmissometer operating at 94 GHz. A model for the propagation of terahertz radiation through leaves is presented. This, in conjunction with leaf thickness information determined separately, may be used to quantitatively relate transmittance measurements to leaf water content. Measurements using a dispersive Fourier transform spectrometer in the range of 100 GHz-500 GHz using Phormium tenax and Fatsia japonica leaves are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first measurement of the relative permittivity (εr) and loss tangent (tan δ) of EPON™ SU-8 advanced thick film ultraviolet photoresist is reported at frequencies between 75–110 GHz (W-band). The problems associated with such a measurement are discussed, an error analysis given, and values of εr=1.725±0.08 and tanδ =0.02±0.001 are determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel wide-band noise source for millimetre-wave spectrometry is described. It uses power combined Schottky diodes, reverse biased to avalanche breakdown, mounted in a wide-band tapered slot antenna. Power has been produced from 15 to 200 GHz with an equivalent temperature of 28200 K at 40 GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moist convection is well known to be generally more intense over continental than maritime regions, with larger updraft velocities, graupel, and lightning production. This study explores the transition from maritime to continental convection by comparing the trends in Tropical Rainfall Measuring Mission (TRMM) radar and microwave (37 and 85 GHz) observations over islands of increasing size to those simulated by a cloud-resolving model. The observed storms were essentially maritime over islands of <100 km2 and continental over islands >10 000 km2, with a gradual transition in between. Equivalent radar and microwave quantities were simulated from cloud-resolving runs of the Weather Research and Forecasting model via offline radiation codes. The model configuration was idealized, with islands represented by regions of uniform surface heat flux without orography, using a range of initial sounding conditions without strong horizontal winds or aerosols. Simulated storm strength varied with initial sounding, as expected, but also increased sharply with island size in a manner similar to observations. Stronger simulated storms were associated with higher concentrations of large hydrometeors. Although biases varied with different ice microphysical schemes, the trend was similar for all three schemes tested and was also seen in 2D and 3D model configurations. The successful reproduction of the trend with such idealized forcing supports previous suggestions that mesoscale variation in surface heating—rather than any difference in humidity, aerosol, or other aspects of the atmospheric state—is the main reason that convection is more intense over continents and large islands than over oceans. Some dynamical storm aspects, notably the peak rainfall and minimum surface pressure low, were more sensitive to surface forcing than to the atmospheric sounding or ice scheme. Large hydrometeor concentrations and simulated microwave and radar signatures, however, were at least as sensitive to initial humidity levels as to surface forcing and were more sensitive to the ice scheme. Issues with running the TRMM simulator on 2D simulations are discussed, but they appear to be less serious than sensitivities to model microphysics, which were similar in 2D and 3D. This supports the further use of 2D simulations to economically explore modeling uncertainties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5–1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and/or to detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the Radar System Airborne (RASTA) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses resulting from the change in configuration that required verification of the RASTA calibration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A set of high-resolution radar observations of convective storms has been collected to evaluate such storms in the UK Met Office Unified Model during the DYMECS project (Dynamical and Microphysical Evolution of Convective Storms). The 3-GHz Chilbolton Advanced Meteorological Radar was set up with a scan-scheduling algorithm to automatically track convective storms identified in real-time from the operational rainfall radar network. More than 1,000 storm observations gathered over fifteen days in 2011 and 2012 are used to evaluate the model under various synoptic conditions supporting convection. In terms of the detailed three-dimensional morphology, storms in the 1500-m grid-length simulations are shown to produce horizontal structures a factor 1.5–2 wider compared to radar observations. A set of nested model runs at grid lengths down to 100m show that the models converge in terms of storm width, but the storm structures in the simulations with the smallest grid lengths are too narrow and too intense compared to the radar observations. The modelled storms were surrounded by a region of drizzle without ice reflectivities above 0 dBZ aloft, which was related to the dominance of ice crystals and was improved by allowing only aggregates as an ice particle habit. Simulations with graupel outperformed the standard configuration for heavy-rain profiles, but the storm structures were a factor 2 too wide and the convective cores 2 km too deep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simulation Package (COSP) is expanded to include scattering and emission effects of clouds and precipitation at passive microwave frequencies. This represents an advancement over the official version of COSP (version 1.4.0) in which only clear-sky brightness temperatures are simulated. To highlight the potential utility of this new microwave simulator, COSP results generated using the climate model EC-Earth's version 3 atmosphere as input are compared with Microwave Humidity Sounder (MHS) channel (190.311 GHz) observations. Specifically, simulated seasonal brightness temperatures (TB) are contrasted with MHS observations for the period December 2005 to November 2006 to identify possible biases in EC-Earth's cloud and atmosphere fields. The EC-Earth's atmosphere closely reproduces the microwave signature of many of the major large-scale and regional scale features of the atmosphere and surface. Moreover, greater than 60 % of the simulated TB are within 3 K of the NOAA-18 observations. However, COSP is unable to simulate sufficiently low TB in areas of frequent deep convection. Within the Tropics, the model's atmosphere can yield an underestimation of TB by nearly 30 K for cloudy areas in the ITCZ. Possible reasons for this discrepancy include both incorrect amount of cloud ice water in the model simulations and incorrect ice particle scattering assumptions used in the COSP microwave forward model. These multiple sources of error highlight the non-unique nature of the simulated satellite measurements, a problem exacerbated by the fact that EC-Earth lacks detailed micro-physical parameters necessary for accurate forward model calculations. Such issues limit the robustness of our evaluation and suggest a general note of caution when making COSP-satellite observation evaluations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collocations between two satellite sensors are occasions where both sensors observe the same place at roughly the same time. We study collocations between the Microwave Humidity Sounder (MHS) on-board NOAA-18 and the Cloud Profiling Radar (CPR) on-board CloudSat. First, a simple method is presented to obtain those collocations and this method is compared with a more complicated approach found in literature. We present the statistical properties of the collocations, with particular attention to the effects of the differences in footprint size. For 2007, we find approximately two and a half million MHS measurements with CPR pixels close to their centrepoints. Most of those collocations contain at least ten CloudSat pixels and image relatively homogeneous scenes. In the second part, we present three possible applications for the collocations. Firstly, we use the collocations to validate an operational Ice Water Path (IWP) product from MHS measurements, produced by the National Environment Satellite, Data and Information System (NESDIS) in the Microwave Surface and Precipitation Products System (MSPPS). IWP values from the CloudSat CPR are found to be significantly larger than those from the MSPPS. Secondly, we compare the relation between IWP and MHS channel 5 (190.311 GHz) brightness temperature for two datasets: the collocated dataset, and an artificial dataset. We find a larger variability in the collocated dataset. Finally, we use the collocations to train an Artificial Neural Network and describe how we can use it to develop a new MHS-based IWP product. We also study the effect of adding measurements from the High Resolution Infrared Radiation Sounder (HIRS), channels 8 (11.11 μm) and 11 (8.33 μm). This shows a small improvement in the retrieval quality. The collocations described in the article are available for public use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arctic Snow Microstructure Experiment (ASMEx) took place in Sodankylä, Finland in the winters of 2013-2014 and 2014-2015. Radiometric, macro-, and microstructure measurements were made under different experimental conditions of homogenous snow slabs, extracted from the natural seasonal taiga snowpack. Traditional and modern measurement techniques were used for snow macro- and microstructure observations. Radiometric measurements of the microwave emission of snow on reflector and absorber bases were made at frequencies 18.7, 21.0, 36.5, 89.0 and 150.0 GHz, for both horizontal and vertical polarizations. Two measurement configurations were used for radiometric measurements: a reflecting surface and an absorbing base beneath the snow slabs. Simulations of brightness temperatures using two microwave emission models, Helsinki University of Technology (HUT) snow emission model and Microwave Emission Model of Layered Snowpacks (MEMLS), were compared to observed brightness temperatures. RMSE and bias were calculated; with the RMSE and bias values being smallest upon an absorbing base at vertical polarization. Simulations overestimated the brightness temperatures on absorbing base cases at horizontal polarization. With the other experimental conditions, the biases were small; with the exception of the HUT model 36.5 GHz simulation, which produced an underestimation for the reflector base cases. This experiment provides a solid framework for future research on the extinction of microwave radiation inside snow.