81 resultados para Fuzzy distance
Resumo:
Perceptual grouping is a pre-attentive process which serves to group local elements into global wholes, based on shared properties. One effect of perceptual grouping is to distort the ability to estimate the distance between two elements. In this study, biases in distance estimates, caused by four types of perceptual grouping, were measured across three tasks, a perception, a drawing and a construction task in both typical development (TD: Experiment 1) and in individuals with Williams syndrome (WS: Experiment 2). In Experiment 1, perceptual grouping distorted distance estimates across all three tasks. Interestingly, the effect of grouping by luminance was in the opposite direction to the effects of the remaining grouping types. We relate this to differences in the ability to inhibit perceptual grouping effects on distance estimates. Additive distorting influences were also observed in the drawing and the construction task, which are explained in terms of the points of reference employed in each task. Experiment 2 demonstrated that the above distortion effects are also observed in WS. Given the known deficit in the ability to use perceptual grouping in WS, this suggests a dissociation between the pre-attentive influence of and the attentive deployment of perceptual grouping in WS. The typical distortion in relation to drawing and construction points towards the presence of some typical location coding strategies in WS. The performance of the WS group differed from the TD participants on two counts. First, the pattern of overall distance estimates (averaged across interior and exterior distances) across the four perceptual grouping types, differed between groups. Second, the distorting influence of perceptual grouping was strongest for grouping by shape similarity in WS, which contrasts to a strength in grouping by proximity observed in the TD participants. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The amount of depth perceived from a fixed pattern of horizontal disparities varies with viewing distance. We investigated whether thresholds for discriminating stereoscopic corrugations at a range of spatial frequencies were also affected by viewing distance or whether they were determined solely by the angular disparity in the stimulus prior to scaling. Although thresholds were found to be determined primarily by disparity over a broad range of viewing distances, they were on average a factor of two higher at the shortest viewing distance (28.5 cm) than at larger viewing distances (57 to 450 cm). We found the same pattern of results when subjects' accommodation was arranged to be the same at all viewing distances. The change in thresholds at close distances is in the direction expected if subjects' performance is limited by a minimum perceived depth.
Resumo:
The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.
Resumo:
This paper develops fuzzy methods for control of the rotary inverted pendulum, an underactuated mechanical system. Two control laws are presented, one for swing up and another for the stabilization. The pendulum is swung up from the vertical down stable position to the upward unstable position in a controlled trajectory. The rules for the swing up are heuristically written such that each swing results in greater energy build up. The stabilization is achieved by mapping a stabilizing LQR control law to two fuzzy inference engines, which reduces the computational load compared with using a single fuzzy inference engine. The robustness of the balancing control is tested by attaching a bottle of water at the tip of the pendulum.
Resumo:
Eye gaze is an important conversational resource that until now could only be supported across a distance if people were rooted to the spot. We introduce EyeCVE, the worldpsilas first tele-presence system that allows people in different physical locations to not only see what each other are doing but follow each otherpsilas eyes, even when walking about. Projected into each space are avatar representations of remote participants, that reproduce not only body, head and hand movements, but also those of the eyes. Spatial and temporal alignment of remote spaces allows the focus of gaze as well as activity and gesture to be used as a resource for non-verbal communication. The temporal challenge met was to reproduce eye movements quick enough and often enough to interpret their focus during a multi-way interaction, along with communicating other verbal and non-verbal language. The spatial challenge met was to maintain communicational eye gaze while allowing free movement of participants within a virtually shared common frame of reference. This paper reports on the technical and especially temporal characteristics of the system.
Resumo:
This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
A new man-made target tracking algorithm integrating features from (Forward Looking InfraRed) image sequence is presented based on particle filter. Firstly, a multiscale fractal feature is used to enhance targets in FLIR images. Secondly, the gray space feature is defined by Bhattacharyya distance between intensity histograms of the reference target and a sample target from MFF (Multi-scale Fractal Feature) image. Thirdly, the motion feature is obtained by differencing between two MFF images. Fourthly, a fusion coefficient can be automatically obtained by online feature selection method for features integrating based on fuzzy logic. Finally, a particle filtering framework is developed to fulfill the target tracking. Experimental results have shown that the proposed algorithm can accurately track weak or small man-made target in FLIR images with complicated background. The algorithm is effective, robust and satisfied to real time tracking.
Resumo:
Genetic algorithms (GAs) have been introduced into site layout planning as reported in a number of studies. In these studies, the objective functions were defined so as to employ the GAs in searching for the optimal site layout. However, few studies have been carried out to investigate the actual closeness of relationships between site facilities; it is these relationships that ultimately govern the site layout. This study has determined that the underlying factors of site layout planning for medium-size projects include work flow, personnel flow, safety and environment, and personal preferences. By finding the weightings on these factors and the corresponding closeness indices between each facility, a closeness relationship has been deduced. Two contemporary mathematical approaches - fuzzy logic theory and an entropy measure - were adopted in finding these results in order to minimize the uncertainty and vagueness of the collected data and improve the quality of the information. GAs were then applied to searching for the optimal site layout in a medium-size government project using the GeneHunter software. The objective function involved minimizing the total travel distance. An optimal layout was obtained within a short time. This reveals that the application of GA to site layout planning is highly promising and efficient.