26 resultados para Frequency-Domain Analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

External interferences can severely degrade the performance of an Over-the-horizon radar (OTHR), so suppression of external interferences in strong clutter environment is the prerequisite for the target detection. The traditional suppression solutions usually began with clutter suppression in either time or frequency domain, followed by the interference detection and suppression. Based on this traditional solution, this paper proposes a method characterized by joint clutter suppression and interference detection: by analyzing eigenvalues in a short-time moving window centered at different time position, Clutter is suppressed by discarding the maximum three eigenvalues at every time position and meanwhile detection is achieved by analyzing the remained eigenvalues at different position. Then, restoration is achieved by forward-backward linear prediction using interference-free data surrounding the interference position. In the numeric computation, the eigenvalue decomposition (EVD) is replaced by values decomposition (SVD) based on the equivalence of these two processing. Data processing and experimental results show its efficiency of noise floor falling down about 10-20 dB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper concerns the switching on of two-dimensional time-harmonic scalar waves. We first review the switch-on problem for a point source in free space, then proceed to analyse the analogous problem for the diffraction of a plane wave by a half-line (the ‘Sommerfeld problem’), determining in both cases the conditions under which the field is well-approximated by the solution of the corresponding frequency domain problem. In both cases the rate of convergence to the frequency domain solution is found to be dependent on the strength of the singularity on the leading wavefront. In the case of plane wave diffraction at grazing incidence the frequency domain solution is immediately attained along the shadow boundary after the arrival of the leading wavefront. The case of non-grazing incidence is also considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper discusses ensemble behaviour in the Spiking Neuron Stochastic Diffusion Network, SNSDN, a novel network exploring biologically plausible information processing based on higher order temporal coding. SNSDN was proposed as an alternative solution to the binding problem [1]. SNSDN operation resembles Stochastic Diffusin on Search, SDS, a non-deterministic search algorithm able to rapidly locate the best instantiation of a target pattern within a noisy search space ([3], [5]). In SNSDN, relevant information is encoded in the length of interspike intervals. Although every neuron operates in its own time, ‘attention’ to a pattern in the search space results in self-synchronised activity of a large population of neurons. When multiple patterns are present in the search space, ‘switching of at- tention’ results in a change of the synchronous activity. The qualitative effect of attention on the synchronicity of spiking behaviour in both time and frequency domain will be discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A robust pole assignment by linear state feedback is achieved in state-space representation by selecting a feedback which minimises the conditioning of the assigned eigenvalues of the closed-loop system. It is shown here that when this conditioning is minimised, a lower bound on the stability margin in the frequency domain is maximised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolutionary meta-algorithms for pulse shaping of broadband femtosecond duration laser pulses are proposed. The genetic algorithm searching the evolutionary landscape for desired pulse shapes consists of a population of waveforms (genes), each made from two concatenated vectors, specifying phases and magnitudes, respectively, over a range of frequencies. Frequency domain operators such as mutation, two-point crossover average crossover, polynomial phase mutation, creep and three-point smoothing as well as a time-domain crossover are combined to produce fitter offsprings at each iteration step. The algorithm applies roulette wheel selection; elitists and linear fitness scaling to the gene population. A differential evolution (DE) operator that provides a source of directed mutation and new wavelet operators are proposed. Using properly tuned parameters for DE, the meta-algorithm is used to solve a waveform matching problem. Tuning allows either a greedy directed search near the best known solution or a robust search across the entire parameter space.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single-carrier frequency division multiple access (SC-FDMA) has appeared to be a promising technique for high data rate uplink communications. Aimed at SC-FDMA applications, a cyclic prefixed version of the offset quadrature amplitude modulation based OFDM (OQAM-OFDM) is first proposed in this paper. We show that cyclic prefixed OQAMOFDM CP-OQAM-OFDM) can be realized within the framework of the standard OFDM system, and perfect recovery condition in the ideal channel is derived. We then apply CP-OQAMOFDM to SC-FDMA transmission in frequency selective fading channels. Signal model and joint widely linear minimum mean square error (WLMMSE) equalization using a prior information with low complexity are developed. Compared with the existing DFTS-OFDM based SC-FDMA, the proposed SC-FDMA can significantly reduce envelope fluctuation (EF) of the transmitted signal while maintaining the bandwidth efficiency. The inherent structure of CP-OQAM-OFDM enables low-complexity joint equalization in the frequency domain to combat both the multiple access interference and the intersymbol interference. The joint WLMMSE equalization using a prior information guarantees optimal MMSE performance and supports Turbo receiver for improved bit error rate (BER) performance. Simulation resultsconfirm the effectiveness of the proposed SC-FDMA in termsof EF (including peak-to-average power ratio, instantaneous-toaverage power ratio and cubic metric) and BER performances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sub-seasonal variability including equatorial waves significantly influence the dehydration and transport processes in the tropical tropopause layer (TTL). This study investigates the wave activity in the TTL in 7 reanalysis data sets (RAs; NCEP1, NCEP2, ERA40, ERA-Interim, JRA25, MERRA, and CFSR) and 4 chemistry climate models (CCMs; CCSRNIES, CMAM, MRI, and WACCM) using the zonal wave number-frequency spectral analysis method with equatorially symmetric-antisymmetric decomposition. Analyses are made for temperature and horizontal winds at 100 hPa in the RAs and CCMs and for outgoing longwave radiation (OLR), which is a proxy for convective activity that generates tropopause-level disturbances, in satellite data and the CCMs. Particular focus is placed on equatorial Kelvin waves, mixed Rossby-gravity (MRG) waves, and the Madden-Julian Oscillation (MJO). The wave activity is defined as the variance, i.e., the power spectral density integrated in a particular zonal wave number-frequency region. It is found that the TTL wave activities show significant difference among the RAs, ranging from ∼0.7 (for NCEP1 and NCEP2) to ∼1.4 (for ERA-Interim, MERRA, and CFSR) with respect to the averages from the RAs. The TTL activities in the CCMs lie generally within the range of those in the RAs, with a few exceptions. However, the spectral features in OLR for all the CCMs are very different from those in the observations, and the OLR wave activities are too low for CCSRNIES, CMAM, and MRI. It is concluded that the broad range of wave activity found in the different RAs decreases our confidence in their validity and in particular their value for validation of CCM performance in the TTL, thereby limiting our quantitative understanding of the dehydration and transport processes in the TTL.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discrete Fourier transmission spread OFDM DFTS-OFDM) based single-carrier frequency division multiple access (SC-FDMA) has been widely adopted due to its lower peak-to-average power ratio (PAPR) of transmit signals compared with OFDM. However, the offset modulation, which has lower PAPR than general modulation, cannot be directly applied into the existing SC-FDMA. When pulse-shaping filters are employed to further reduce the envelope fluctuation of transmit signals of SC-FDMA, the spectral efficiency degrades as well. In order to overcome such limitations of conventional SC-FDMA, this paper for the first time investigated cyclic prefixed OQAMOFDM (CP-OQAM-OFDM) based SC-FDMA transmission with adjustable user bandwidth and space-time coding. Firstly, we propose CP-OQAM-OFDM transmission with unequally-spaced subbands. We then apply it to SC-FDMA transmission and propose a SC-FDMA scheme with the following features: a) the transmit signal of each user is offset modulated single-carrier with frequency-domain pulse-shaping; b) the bandwidth of each user is adjustable; c) the spectral efficiency does not decrease with increasing roll-off factors. To combat both inter-symbolinterference and multiple access interference in frequencyselective fading channels, a joint linear minimum mean square error frequency domain equalization using a prior information with low complexity is developed. Subsequently, we construct space-time codes for the proposed SC-FDMA. Simulation results confirm the powerfulness of the proposed CP-OQAM-OFDM scheme (i.e., effective yet with low complexity).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.