26 resultados para Fraction d’Éjection
Resumo:
We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Cloud radar and lidar can be used to evaluate the skill of numerical weather prediction models in forecasting the timing and placement of clouds, but care must be taken in choosing the appropriate metric of skill to use due to the non- Gaussian nature of cloud-fraction distributions. We compare the properties of a number of different verification measures and conclude that of existing measures the Log of Odds Ratio is the most suitable for cloud fraction. We also propose a new measure, the Symmetric Extreme Dependency Score, which has very attractive properties, being equitable (for large samples), difficult to hedge and independent of the frequency of occurrence of the quantity being verified. We then use data from five European ground-based sites and seven forecast models, processed using the ‘Cloudnet’ analysis system, to investigate the dependence of forecast skill on cloud fraction threshold (for binary skill scores), height, horizontal scale and (for the Met Office and German Weather Service models) forecast lead time. The models are found to be least skillful at predicting the timing and placement of boundary-layer clouds and most skilful at predicting mid-level clouds, although in the latter case they tend to underestimate mean cloud fraction when cloud is present. It is found that skill decreases approximately inverse-exponentially with forecast lead time, enabling a forecast ‘half-life’ to be estimated. When considering the skill of instantaneous model snapshots, we find typical values ranging between 2.5 and 4.5 days. Copyright c 2009 Royal Meteorological Society
Resumo:
The contribution of individual grain size fractions (2000–500, 500–250, 250–63, 63–2 and < 2 μm) to bulk soil surface area and reactivity is discussed with reference to mineralogical and oxalate and dithionite extractions data. The 63–2 μm fraction contributed up to 56% and 67% of bulk soil volume and BET surface area, respectively. Consideration of these observations and the mineralogy of this fraction suggest that the 63–2 μm fraction may be the most influential for the release of elements via mineral dissolution in the bulk soil.
Resumo:
Scope: Cocoa, especially the water-insoluble cocoa fraction (WICF), is a rich source of polyphenols. In this study, sequential in vitro digestion of the WICF with gastrointestinal enzymes as well as its bacterial fermentation in a human colonic model system were carried out to investigate bioaccessibility and biotransformation of WICF polyphenols, respectively. Methods and results: The yield of each enzymatic digestion step and the total antioxidant capacity (TAC) were measured and solubilized phenols were characterized by MS/MS. Fermentation of WICF and the effect on the gut microbiota, SCFA production and metabolism of polyphenols was analyzed. In vitro digestion solubilized 38.6% of WICF with pronase and Viscozyme L treatments releasing 51% of the total phenols from the insoluble material. This release of phenols does not determine a reduction in the total antioxidant capacity of the digestion-resistant material. In the colonic model WICF significantly increased of bifidobacteria and lactobacilli as well as butyrate production. Flavanols were converted into phenolic acids by the microbiota following a concentration gradient resulting in high concentrations of 3-hydroxyphenylpropionic acid (3-HPP) in the last gut compartment. Conclusion: Data showed that WICF may exert antioxidant action through the gastrointestinal tract despite its polyphenols being still bound to macromolecules and having prebiotic activity.
Resumo:
The intake fraction (iF) of nonreactive constituents of exhaust from mobile vehicles in the urban area of HongKong is investigated using available monitoring data for carbon monoxide (CO) as a tracer of opportunity. Correcting for regional transport of carbon monoxide into HongKong, the annual-average iF for nonreactive motor vehicle emissions within the city is estimated to be around 270 per million. This estimated iF is much higher than values previously reported for vehicle emissions in US urban areas, Helsinki and Beijing, and somewhat lower than those reported for a densely populated street canyon in downtown Manhattan, New York City, or for emissions into indoor environments. The reported differences in intakefractions in various cities mainly result from the differences in local population densities. Our analysis highlights the importance of accounting for the influence of upwind transport of pollutants when using ambient data to estimate iF for an urban area. For vehicleexhaust in HongKong, it is found that the in/near vehicle microenvironment contributes similarly to the indoor home environment when accounting for the overall iF for children and adults. Keywords Intakefraction; Vehicle emission; Regional pollutant transport; Carbon monoxide; Exposure
Resumo:
Given the background of serious urban pollution in Hong Kong, the intake fraction (iF) of carbon monoxide due to mobile vehicles in urban area of Hong Kong is investigated and estimated to be 600 per million, much higher than those in US urban areas, Helsinki and even Beijing, indicating the high exposure level to urban pollutants in Hong Kong. The dependence of iF to the metrological factors is also discussed. Easterly and northerly winds contribute most to the total iF value. A new method of predicting ventilation rate for a city based on iF concept is proposed. City ventilation rates for different cities are calculated and compared. It is found that Hong Kong has to face the fact that it has the lowest ventilation rate and ACH.
Resumo:
Expressions for finite sums involving the binomial coefficients with unit fraction coefficients whose denominators form an arithmetic sequence are determined.
Resumo:
In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction ( fm) and its impacts on deriving the anthropogenic component of aerosol optical depth (ta) and direct radiative forcing from multispectral satellite measurements. A proxy of fm, empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying fm is then implemented into a method of estimating ta and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated ta by about 20% over global ocean, with the overestimation up to �45% in some regions and seasons. The 7-year (2001–2007) global ocean average ta is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.
Resumo:
The area of Arctic September sea ice has diminished from about 7 million km2 in the 1990s to less than 5 million km2 in five of the past seven years, with a record minimum of 3.6 million km2 in 2012 (ref. 1). The strength of this decrease is greater than expected by the scientific community, the reasons for this are not fully understood, and its simulation is an on-going challenge for existing climate models2, 3. With growing Arctic marine activity there is an urgent demand for forecasting Arctic summer sea ice4. Previous attempts at seasonal forecasts of ice extent were of limited skill5, 6, 7, 8, 9. However, here we show that the Arctic sea-ice minimum can be accurately forecasted from melt-pond area in spring. We find a strong correlation between the spring pond fraction and September sea-ice extent. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. Our results help explain the acceleration of Arctic sea-ice decrease during the past decade. The inclusion of our new melt-pond model10 promises to improve the skill of future forecast and climate models in Arctic regions and beyond.
Resumo:
Aerosol-cloud interactions have the potential to modify many different cloud properties. There is significant uncertainty in the strength of these aerosol-cloud interactions in analyses of observational data, partly due to the difficulty in separating aerosol effects on clouds from correlations generated by local meteorology. The relationship between aerosol and cloud fraction (CF) is particularly important to determine, due to the strong correlation of CF to other cloud properties and its large impact on radiation. It has also been one of the hardest to quantify from satellites due to the strong meteorological covariations involved. This work presents a new method to analyze the relationship between aerosol optical depth (AOD) and CF. By including information about the cloud droplet number concentration (CDNC), the impact of the meteorological covariations is significantly reduced. This method shows that much of the AOD-CF correlation is explained by relationships other than that mediated by CDNC. By accounting for these, the strength of the global mean AOD-CF relationship is reduced by around 80%. This suggests that the majority of the AOD-CF relationship is due to meteorological covariations, especially in the shallow cumulus regime. Requiring CDNC to mediate the AOD-CF relationship implies an effective anthropogenic radiative forcing from an aerosol influence on liquid CF of −0.48 W m−2 (−0.1 to −0.64 W m−2), although some uncertainty remains due to possible biases in the CDNC retrievals in broken cloud scenes.