101 resultados para Forest fires.
Resumo:
Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, Sao Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha(-1) yr(-1) for NO3-N and 3.85 kg.ha(-1) yr(-1) for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted Sao Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions.
Resumo:
In April–July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforest" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (~100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 105 radicals cm−3, but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.
Resumo:
A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.
Resumo:
Thirty‐three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation phase and duration of above‐freezing air temperatures are shown to be major influences on divergence and convergence of modeled estimates of the subcanopy snowpack. When models are considered collectively at all locations, comparisons with observations show that it is harder to model SWE at forested sites than open sites. There is no universal “best” model for all sites or locations, but comparison of the consistency of individual model performances relative to one another at different sites shows that there is less consistency at forest sites than open sites, and even less consistency between forest and open sites in the same year. A good performance by a model at a forest site is therefore unlikely to mean a good model performance by the same model at an open site (and vice versa). Calibration of models at forest sites provides lower errors than uncalibrated models at three out of four locations. However, benefits of calibration do not translate to subsequent years, and benefits gained by models calibrated for forest snow processes are not translated to open conditions.
Resumo:
Canopy interception of incident precipitation is a critical component of the forest water balance during each of the four seasons. Models have been developed to predict precipitation interception from standard meteorological variables because of acknowledged difficulty in extrapolating direct measurements of interception loss from forest to forest. No known study has compared and validated canopy interception models for a leafless deciduous forest stand in the eastern United States. Interception measurements from an experimental plot in a leafless deciduous forest in northeastern Maryland (39°42'N, 75°5'W) for 11 rainstorms in winter and early spring 2004/05 were compared to predictions from three models. The Mulder model maintains a moist canopy between storms. The Gash model requires few input variables and is formulated for a sparse canopy. The WiMo model optimizes the canopy storage capacity for the maximum wind speed during each storm. All models showed marked underestimates and overestimates for individual storms when the measured ratio of interception to gross precipitation was far more or less, respectively, than the specified fraction of canopy cover. The models predicted the percentage of total gross precipitation (PG) intercepted to within the probable standard error (8.1%) of the measured value: the Mulder model overestimated the measured value by 0.1% of PG; the WiMo model underestimated by 0.6% of PG; and the Gash model underestimated by 1.1% of PG. The WiMo model’s advantage over the Gash model indicates that the canopy storage capacity increases logarithmically with the maximum wind speed. This study has demonstrated that dormant-season precipitation interception in a leafless deciduous forest may be satisfactorily predicted by existing canopy interception models.
Resumo:
The Grey-necked Picathartes Picathartes oreas, considered 'Vulnerable', is an enigmatic ground-dwelling bird endemic to the central African equatorial rainforest and belongs to a family of only two species. Its distribution extends to the two Endemic Bird Areas within Cameroon (Guinea Congo forest biome and Cameroon mountain arc) and its population is thought to be in decline throughout its range due to increasing habitat fragmentation and disturbance. During March-April 2003 and June and October 2007 we surveyed Grey-necked Picathartes in the north-western region of the Mbam Minkom Mountain Forest. In January-March 2006 we surveyed the entire mountain range and found go breeding and 24 potential breeding sites, mostly located on the western slopes. From the complete survey, we estimated the population at 44 breeding individuals. Populations were highest in the north-west region but had apparently declined from 40 breeding individuals in 2003 to 20 in 2007. This region accounted for 41% of the entire population on the mountain range during the 2006 survey. The Mbam Minkom/Kala Important Bird Area was designated based on the presence of Grey-necked Picathartes but is under high pressure of imminent destruction from agricultural encroachment and illegal timber exploitation. These results have important implications for decision making in delimiting forest boundaries and core areas for protection in the development of management plans. We suggest possible remedial actions, appropriate repeatable methods for future monitoring and opportunities for community involvement in the management and conservation of the site.
Resumo:
Knowledge of tropical raptor habitat use is limited and yet a thorough understanding is vital when trying to conserve endangered species. We used a well studied, reintroduced population of the vulnerable Mauritius Kestrel Falco punctatus to investigate habitat preferences in a modified landscape. We constructed a high resolution digital habitat map and radiotracked 13 juvenile Kestrels to quantify habitat preferences. We distinguished seven habitat types in our study area and tracked Kestrels from 71 to 130 days old during which they dispersed from their natal territory and settled within a home-range after reaching independence. Mean home-range size was 0.95 km(2) characterized by a bimodal pattern of intensity around the natal site and post-independence home-range. Compositional analysis showed that home-ranges were located non-randomly with respect to habitat but there was no evidence to suggest differential use of habitats within home-ranges. Native and semi-invaded forest and grassland were consistently preferred, whereas agriculture was used significantly less than other habitats. No difference was found between the available length of edge dividing native forest and grassland within a home-range when compared to that available within a 2.35-km buffer around their nest-site, based on the maximum distance a juvenile was found to disperse. Repeating the analysis in three dimensions gave very similar results. Our results suggest that Mauritius Kestrels are not obligate forest dwellers as was once thought but can also exploit open habitats such as grassland. Kestrels may be using isolated mature trees within grassland as vantage points for hunting in the same way as they use the natural stratified forest structure. We suggest that the avoidance of agriculture is partly due to a lack of such vantage points. The conservation importance of forest degradation and agricultural encroachment is highlighted and comparisons with the habitat preferences of other tropical falcons are discussed.
Resumo:
We investigated seed dormancy and germination in Ficus lundellii Standl. (Moraceae), a native species of Mexico's Los Tuxtlas tropical rain forest. In an 8-h photoperiod at an alternating diurnal (16/8 h) temperature of 20/30 degrees C, germination was essentially complete (96%) within 28 days, whereas in darkness, all seeds remained dormant. Neither potassium nitrate (0.05-0.2%) applied continuously nor gibberellic acid applied either continuously (10-200 ppm) or as a 24 hour pretreatment (2000 ppm) induced germination in the dark. Germination in the light was not reduced by a 24-h hydrochloric acid (0.1-1%) pretreatment, but it was reduced both by a 24-h pretreatment with either H2O2 (0. 1-5 M) or 5% HCl, or by more than 5 days of storage at 40 degrees C (4.5% seed water content). In a study with a 2-dimensional temperature gradient plate, seeds germinated fully and rapidly in the light at a constant temperature of 30 degrees C, and fully but less rapidly in the light at alternating temperatures with low amplitudes (< 12 degrees C) about the optimal constant temperature. The base, optimal and ceiling temperatures for rate of germination were estimated as 13.8, 30.1 and 41.1 degrees C, respectively. In all temperature regimes, light was essential for the germination of F lundellii seeds.
Resumo:
This paper examines the debate surrounding a recent decision made by the Ghanaian government to permit gold exploration - and potentially, mining - in 'protected' forest reserves. In 2001, four mining companies were awarded mineral exploration concessions in forested regions of the country, and have since put forward applications to mine for gold. Notwithstanding the sharp divide in opinion on the issue, the continued uncertainty surrounding the implications of the proposed activities makes further research on the ground imperative in the short term. Work aiming to elicit indigenous perspectives on the projects, as well as research that facilitates dialogue between and/or among stakeholder parties, should be prioritized.
Resumo:
Leaves of 14 species of Ficus growing in the Budongo Forest, Uganda, were analysed for vacuolar flavonoids. Three to six accessions were studied for each species to see whether there was intraspecific chemical variation. Thirty-nine phenolic compounds were identified or characterised, including 14 flavonol O-glycosides, six flavone O-glycosides and 15 flavone C-glycosides. In some species the flavonoid glycosides were acylated. Ficus thonningii contained in addition four stilbenes including glycosides. Most of the species could be distinguished from each other on the basis of their flavonoid profiles, apart from Ficus sansibarica and Ficus saussureana, which showed a very strong intraspecific variation. However, on the whole flavonoid profiles were sufficiently distinct to help in future identifications.
Resumo:
As Terabyte datasets become the norm, the focus has shifted away from our ability to produce and store ever larger amounts of data, onto its utilization. It is becoming increasingly difficult to gain meaningful insights into the data produced. Also many forms of the data we are currently producing cannot easily fit into traditional visualization methods. This paper presents a new and novel visualization technique based on the concept of a Data Forest. Our Data Forest has been designed to be used with vir tual reality (VR) as its presentation method. VR is a natural medium for investigating large datasets. Our approach can easily be adapted to be used in a variety of different ways, from a stand alone single user environment to large multi-user collaborative environments. A test application is presented using multi-dimensional data to demonstrate the concepts involved.