33 resultados para Forest Model
Resumo:
This paper explores the impact of the re-introduction of access restrictions to forests in Tanzania, through participatory forest management (PFM), that have excluded villagers from forests to which they have traditionally, albeit illegally, had access to collect non-timber forest products (NTFPs). Motivated by our fieldwork, and using a spatial–temporal model, we focus on the paths of forest degradation and regeneration and villagers' utility before and after an access restriction is introduced. Our paper illustrates a number of key points for policy makers. First, the benefits of forest conservation tend to be greatest in the first few periods after an access restriction is introduced, after which the overall forest quality often declines. Second, villagers may displace their NTFP collection into more distant forests that may have been completely protected by distance alone before access to a closer forest was restricted. Third, permitting villagers to collect limited amounts of NTFPs for a fee, or alternatively fining villagers caught collecting illegally from the protected forest, and returning the fee or fine revenue to the villagers, can improve both forest quality and villagers' livelihoods.
Resumo:
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.
Resumo:
Where joint forest management has been introduced into Tanzania, ‘volunteer’ patrollers take responsibility for enforcing restrictions over the harvesting of forest resources, often receiving as an incentive a share of the collected fine revenue. Using an optimal enforcement model, we explore how that share, and whether villagers have alternative sources of forest products, determines the effort patrollers put into enforcement and whether they choose to take a bribe rather than honestly reporting the illegal collection of forest resources. Without funds for paying and monitoring patrollers, policy makers face tradeoffs over illegal extraction, forest protection and revenue generation through fine collection.
Resumo:
Crop production is inherently sensitive to fluctuations in weather and climate and is expected to be impacted by climate change. To understand how this impact may vary across the globe many studies have been conducted to determine the change in yield of several crops to expected changes in climate. Changes in climate are typically derived from a single to no more than a few General Circulation Models (GCMs). This study examines the uncertainty introduced to a crop impact assessment when 14 GCMs are used to determine future climate. The General Large Area Model for annual crops (GLAM) was applied over a global domain to simulate the productivity of soybean and spring wheat under baseline climate conditions and under climate conditions consistent with the 2050s under the A1B SRES emissions scenario as simulated by 14 GCMs. Baseline yield simulations were evaluated against global country-level yield statistics to determine the model's ability to capture observed variability in production. The impact of climate change varied between crops, regions, and by GCM. The spread in yield projections due to GCM varied between no change and a reduction of 50%. Without adaptation yield response was linearly related to the magnitude of local temperature change. Therefore, impacts were greatest for countries at northernmost latitudes where warming is predicted to be greatest. However, these countries also exhibited the greatest potential for adaptation to offset yield losses by shifting the crop growing season to a cooler part of the year and/or switching crop variety to take advantage of an extended growing season. The relative magnitude of impacts as simulated by each GCM was not consistent across countries and between crops. It is important, therefore, for crop impact assessments to fully account for GCM uncertainty in estimating future climates and to be explicit about assumptions regarding adaptation.
Resumo:
This study examines thermally induced flows (or “snow breezes”) associated with snow cover in the boreal forests of Canada. Observations from a lake less than 4 km across were made as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) winter field campaign. These are interpreted with the aid of idealized three-dimensional mesoscale model simulations representing the forest-lake contrast. Typically, strong forest-lake temperature contrasts develop in the lowest 50 m of the atmosphere during the morning. The resulting pressure gradients induce low-level onshore wind components across the lake. This snow breeze persists into the afternoon provided that large-scale winds remain light. A characteristic snow breeze signature is clearly evident in wind observations averaged over 27 days of data, in agreement with model simulations. The study suggests that snow breezes will regularly develop over the many larger lakes and other unvegetated areas in the region.
Resumo:
When villagers extract resources, such as fuelwood, fodder, or medicinal plants from forests, their decisions over where and how much to extract are influenced by market conditions, their particular opportunity costs of time, minimum consumption needs, and access to markets. This paper develops an optimization model of villagers’ extraction behavior that clarifies how, and under what conditions, policies that create incentives such as improved returns to extraction in a buffer zone might be used instead of adversarial enforcement efforts to protect a forest’s pristine ‘‘inner core.’’
Resumo:
REDD (reduced emissions from deforestation and degradation) aims to slow carbon releases caused by forest disturbance by making payments conditional on forest quality over time. Like earlier policies to slow deforestation, REDD must change the behaviour of forest degrading actors. Broadly, it can be implemented with payments to forest users in exchange for improved forest management, thus creating incentives; through payments for enforcement, thus creating disincentives; or through addressing external drivers such as urban charcoal demand. In Tanzania, community-based forest management (CBFM), a form of participatory forest management, was chosen by the Tanzania Forest Conservation Group, a local NGO, as a model for implementing REDD pilot programmes. Payments are made to villages that have the rights to forest carbon. In exchange, the villages must demonstrably reduce deforestation at the village level. In this paper, using this pilot programme as a case study, combined with a review of the literature, we provide insights for REDD implementation in sub-Saharan Africa. We pay particular attention to leakage, monitoring and enforcement. We suggest that implementing REDD through CBFM-type structures can create appropriate incentives and behaviour change when the recipients of the REDD funds are also the key drivers of forest change. When external forces drive forest change, however, REDD through CBFM-type structures becomes an enforcement programme with local communities rather than government agencies being responsible for the enforcement. That structure imposes costs on local communities, whose local authority limits the ability to address leakage outside the particular REDD village.
Resumo:
Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
Resumo:
The primary role of land surface models embedded in climate models is to partition surface available energy into upwards, radiative, sensible and latent heat fluxes. Partitioning of evapotranspiration, ET, is of fundamental importance: as a major component of the total surface latent heat flux, ET affects the simulated surface water balance, and related energy balance, and consequently the feedbacks with the atmosphere. In this context it is also crucial to credibly represent the CO2 exchange between ecosystems and their environment. In this study, JULES, the land surface model used in UK weather and climate models, has been evaluated for temperate Europe. Compared to eddy covariance flux measurements, the CO2 uptake by the ecosystem is underestimated and the ET overestimated. In addition, the contribution to ET from soil and intercepted water evaporation far outweighs the contribution of plant transpiration. To alleviate these biases, adaptations have been implemented in JULES, based on key literature references. These adaptations have improved the simulation of the spatio-temporal variability of the fluxes and the accuracy of the simulated GPP and ET, including its partitioning. This resulted in a shift of the seasonal soil moisture cycle. These adaptations are expected to increase the fidelity of climate simulations over Europe. Finally, the extreme summer of 2003 was used as evaluation benchmark for the use of the model in climate change studies. The improved model captures the impact of the 2003 drought on the carbon assimilation and the water use efficiency of the plants. It, however, underestimates the 2003 GPP anomalies. The simulations showed that a reduction of evaporation from the interception and soil reservoirs, albeit not of transpiration, largely explained the good correlation between the carbon and the water fluxes anomalies that was observed during 2003. This demonstrates the importance of being able to discriminate the response of individual component of the ET flux to environmental forcing.
Resumo:
A new model has been developed for assessing multiple sources of nitrogen in catchments. The model (INCA) is process based and uses reaction kinetic equations to simulate the principal mechanisms operating. The model allows for plant uptake, surface and sub-surface pathways and can simulate up to six land uses simultaneously. The model can be applied to catchment as a semi-distributed simulation and has an inbuilt multi-reach structure for river systems. Sources of nitrogen can be from atmospheric deposition, from the terrestrial environment (e.g. agriculture, leakage from forest systems etc.), from urban areas or from direct discharges via sewage or intensive farm units. The model is a daily simulation model and can provide information in the form of time series at key sites, or as profiles down river systems or as statistical distributions. The process model is described and in a companion paper the model is applied to the River Tywi catchment in South Wales and the Great Ouse in Bedfordshire.
Resumo:
A process-based fire regime model (SPITFIRE) has been developed, coupled with ecosystem dynamics in the LPJ Dynamic Global Vegetation Model, and used to explore fire regimes and the current impact of fire on the terrestrial carbon cycle and associated emissions of trace atmospheric constituents. The model estimates an average release of 2.24 Pg C yr−1 as CO2 from biomass burning during the 1980s and 1990s. Comparison with observed active fire counts shows that the model reproduces where fire occurs and can mimic broad geographic patterns in the peak fire season, although the predicted peak is 1–2 months late in some regions. Modelled fire season length is generally overestimated by about one month, but shows a realistic pattern of differences among biomes. Comparisons with remotely sensed burnt-area products indicate that the model reproduces broad geographic patterns of annual fractional burnt area over most regions, including the boreal forest, although interannual variability in the boreal zone is underestimated.
Resumo:
14C-dated pollen and lake-level data from Europe are used to assess the spatial patterns of climate change between 6000 yr BP and present, as simulated by the NCAR CCM1 (National Center for Atmospheric Research, Community Climate Model, version 1) in response to the change in the Earth’s orbital parameters during this perod. First, reconstructed 6000 yr BP values of bioclimate variables obtained from pollen and lake-level data with the constrained-analogue technique are compared with simulated values. Then a 6000 yr BP biome map obtained from pollen data with an objective biome reconstruction (biomization) technique is compared with BIOME model results derived from the same simulation. Data and simulations agree in some features: warmer-than-present growing seasons in N and C Europe allowed forests to extend further north and to higher elevations than today, and warmer winters in C and E Europe prevented boreal conifers from spreading west. More generally, however, the agreement is poor. Predominantly deciduous forest types in Fennoscandia imply warmer winters than the model allows. The model fails to simulate winters cold enough, or summers wet enough, to allow temperate deciduous forests their former extended distribution in S Europe, and it incorrectly simulates a much expanded area of steppe vegetation in SE Europe. Similar errors have also been noted in numerous 6000 yr BP simulations with prescribed modern sea surface temperatures. These errors are evidently not resolved by the inclusion of interactive sea-surface conditions in the CCM1. Accurate representation of mid-Holocene climates in Europe may require the inclusion of dynamical ocean–atmosphere and/or vegetation–atmosphere interactions that most palaeoclimate model simulations have so far disregarded.
Resumo:
In low-income countries, both nearby local villagers, “insiders”, and non-locals, “outsiders”, extract products from protected forests even though their actions are illegal. Forest managers typically combine enforcement and livelihood projects offered to nearby communities to reduce this illegal activity, but with limited budgets cannot deter all extraction. We develop a game theoretic model of a forest manager's decision interacting with the extraction decisions of insiders and outsiders. Our analysis suggests that, depending on the relative ecological damage caused by each group, budget-constrained forest managers may reduce total forest degradation by legalizing “insider” extraction in return for local villagers' involvement in enforcement activities against outsiders.
Resumo:
Incomplete understanding of three aspects of the climate system—equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing—and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century1,2. Explorations of these uncertainties have so far relied on scaling approaches3,4, large ensembles of simplified climate models1,2, or small ensembles of complex coupled atmosphere–ocean general circulation models5,6 which under-represent uncertainties in key climate system properties derived from independent sources7–9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere–ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4–3 K by 2050, relative to 1961–1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report10, but extends towards larger warming than observed in ensemblesof-opportunity5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range ‘no mitigation’ scenario for greenhouse-gas emissions.
Resumo:
The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.