60 resultados para Fish Oil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial dysfunction and an associated increase in vascular tone are risk factors for cardiovascular disease and highly predictive of future cardiovascular events. A part of the benefits associated with increased intake of the long chain (LC) n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid and docosahexaenoic acid, found in fish oils is a positive impact on cardiovascular health. Here, the recent evidence from human observational and intervention trials are reviewed, and an insight into potential mechanisms underlying the impact of LC n-3 PUFA on vascular reactivity is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Emerging cellular markers of endothelial damage and repair include endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) respectively. Effects of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and influence of genetic background on these markers are not known. Objective This study investigated the effects of fish oil supplementation on both classical and novel markers of endothelial function in subjects prospectively genotyped for the Asp298 eNOS polymorphism and at moderate risk of CVD. Design 84 subjects with moderate risk of CVD (n=40 GG and n=44 GT/TT) completed a randomized, double-blind, placebo-controlled, 8-week cross-over trial of fish oil supplementation providing 1.5 g/d LC n-3 PUFA. Effects of genotype and fish oil supplementation on the blood lipid profile, inflammatory markers, vascular function (EndoPAT) and numbers of circulating EPCs and EMP (flow cytometry) were assessed. Results There was no significant effect of fish oil supplementation on blood pressure, plasma lipids or plasma glucose, although there was a trend (P = 0.069) towards a decrease in plasma TG concentration after FO supplementation compared to placebo. GT/TT subjects tended to have higher levels of total cholesterol and LDL-cholesterol, but vascular function was not affected by either treatment or eNOS genotype. Biochemical markers of endothelial function were also unaffected by treatment and eNOS genotype. In contrast, there was a significant effect of fish oil supplementation on cellular markers of endothelial function. Fish oil supplementation increased numbers of EPCs and reduced numbers of EMPs relative to the placebo, potentially favouring maintenance of endothelial integrity. There was no influence of genotype for any of the cellular markers of endothelial function, indicating that the effects of fish oil supplementation were independent of eNOS genotype. Conclusions Emerging cellular markers of endothelial damage, integrity and repair appear to be sensitive to potentially beneficial modification by dietary n-3 PUFA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Carriers of the apolipoprotein E ɛ4 (APOE4) allele are lower responders to a docosahexaenoic acid (DHA) supplement than are noncarriers. This effect could be exacerbated in overweight individuals because DHA metabolism changes according to body mass index (BMI; in kg/m²). OBJECTIVES: We evaluated the plasma fatty acid (FA) response to a DHA-rich supplement in APOE4 carriers and noncarriers consuming a high-saturated fat diet (HSF diet) and, in addition, evaluated whether being overweight changed this response. DESIGN: This study was part of the SATgenɛ trial. Forty-one APOE4 carriers and 41 noncarriers were prospectively recruited and consumed an HSF diet for 8-wk followed by 8 wk of consumption of an HSF diet with the addition of DHA and eicosapentaenoic acid (EPA) (HSF + DHA diet; 3.45 g DHA/d and 0.5 g EPA/d). Fasting plasma samples were collected at the end of each intervention diet. Plasma total lipids (TLs) were separated into free FAs, neutral lipids (NLs), and phospholipids by using solid-phase extraction, and FA profiles in each lipid class were quantified by using gas chromatography. RESULTS: Because the plasma FA response to the HSF + DHA diet was correlated with BMI in APOE4 carriers but not in noncarriers, the following 2 groups were formed according to the BMI median: low BMI (<25.5) and high BMI (≥25.5). In response to the HSF + DHA diet, there were significant BMI × genotype interactions for changes in plasma concentrations of arachidonic acid and DHA in phospholipids and TLs and of EPA in NLs and TLs (P ≤ 0.05). APOE4 carriers were lower plasma responders to the DHA supplement than were noncarriers but only in the high-BMI group. CONCLUSIONS: Our findings indicate that apolipoprotein E genotype and BMI may be important variables that determine the plasma long-chain PUFA response to dietary fat manipulation. APOE4 carriers with BMI ≥25.5 may need higher intakes of DHA for cardiovascular or other health benefits than do noncarriers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although a large number of randomized controlled trials (RCTs) have examined the impact of the n-3 (ω-3) fatty acids EPA (20:5n-3) and DHA (22:6n-3) on blood pressure and vascular function, the majority have used doses of EPA+DHA of > 3 g per d,which are unlikely to be achieved by diet manipulation. Objective: The objective was to examine, using a retrospective analysis from a multi-center RCT, the impact of recommended, dietary achievable EPA+DHA intakes on systolic and diastolic blood pressure and microvascular function in UK adults. Design: Healthy men and women (n = 312) completed a double-blind, placebo-controlled RCT consuming control oil, or fish oil providing 0.7 g or 1.8 g EPA+DHA per d in random order each for 8 wk. Fasting blood pressure and microvascular function (using Laser Doppler Iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the eNOS rs1799983 variant. Results: No impact of n-3 fatty acid treatment or any treatment * eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P=0.046) fish oil-induced reduction (mean 5 mmHg) in systolic blood pressure specifically in those with isolated systolic hypertension (n=31). No dose response was observed. Conclusions: These findings indicate that, in those with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g bring about clinically meaningful blood pressure reductions which, at a population level, would be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT where participants are prospectively recruited on the basis of blood pressure status is required to draw definite conclusions. The Journal of Nutrition NUTRITION/2015/220475 Version 4

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eighty-eight multiparous sows were used to evaluate whether type and timing of oil supplementation during gestation influences the incidence of low birth weight (LBW). Sows were allocated (eight per treatment) commercial sow pellets (3 kg/d; control diet) or an experimental diet consisting of control diet plus 10 % extra energy in the form of excess pellets, palm oil, olive oil (OO), sunflower oil (SO) or fish oil; experimental diets were fed during either the first half (G1) or second half (G2) of gestation. Growth performance and endocrine profile of LBW ( < 1·09 kg) and normal birth weight (NBW; 1·46–1·64 kg) offspring were compared. Maternal dietary supplementation altered the distribution curve for piglet birth weight. SOG1 sows had a greater proportion of LBW piglets (P < 0·05), whilst it was reduced in the OOG1 group (P < 0·05). Growth rate of LBW piglets was lower compared with their NBW siblings (P < 0·05) when dietary supplementation was offered in G2 but were similar for G1. At birth, LBW offspring of supplemented animals possessed more fat compared with the control group (P < 0·05); LBW offspring of control animals exhibited a more rapid decline in fat free mass/kg prior to weaning. Plasma metabolites and insulin concentrations were influenced by maternal diet and birth weight. In conclusion, maternal dietary supplementation altered the distribution of piglet birth weights and improved the energy status of LBW piglets. Supplementation with MUFA during G1 reduced the incidence of LBW, whereas PUFA had the reverse effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The lipid-modulatory effects of high intakes of the fish-oil fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well established and likely to contribute to cardioprotective benefits. Objectives: We aimed to determine the effect of moderate EPA and DHA intakes (< 2 g EPA + DHA/d) on the plasma fatty acid profile, lipid and apolipoprotein concentrations, lipoprotein subclass distribution, and markers of oxidative status. We also aimed to examine the effect of age, sex, and apolipoprotein E (APOE) genotype on the observed responses. Design: Three hundred twelve adults aged 20-70 y, who were prospectively recruited according to age, sex, and APOE genotype, completed a double-blind placebo-controlled crossover study. Participants consumed control oil, 0.7 g EPA + DHA/d (0.7FO), and 1.8 g EPA + DHA/d (1.8FO) capsules in random order, each for an 8-wk intervention period, separated by 12-wk washout periods. Results: In the group as a whole, 8% and 11% lower plasma triacylglycerol concentrations were evident after 0.7FO and 1.8FO, respectively (P < 0.001): significant sex x treatment (P = 0.038) and sex x genotype x treatment (P = 0.032) interactions were observed, and the greatest triacylglycerol-lowering responses (reductions of 15% and 23% after 0.7FO and 1.8FO, respectively) were evident in APOE4 men. Furthermore, lower VLDL-cholesterol (P = 0.026) and higher LDL-cholesterol (P = 0.010), HDL-cholesterol (P < 0.001), and HDL2 (P < 0.001) concentrations were evident after fish-oil intervention. Conclusions: Supplements providing EPA + DHA at doses as low as 0.7 g/d have a significant effect on the plasma lipid profile. The results of the current trial, which used a prospective recruitment approach to examine the responses in population subgroups, are indicative of a greater triacylglycerol-lowering action of long-chain n-3 polyunsaturated fatty acids in males than in females.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The lipid-modulatory effects of high intakes of the fish-oil fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well established and likely to contribute to cardioprotective benefits. Objectives: We aimed to determine the effect of moderate EPA and DHA intakes (< 2 g EPA + DHA/d) on the plasma fatty acid profile, lipid and apolipoprotein concentrations, lipoprotein subclass distribution, and markers of oxidative status. We also aimed to examine the effect of age, sex, and apolipoprotein E (APOE) genotype on the observed responses. Design: Three hundred twelve adults aged 20-70 y, who were prospectively recruited according to age, sex, and APOE genotype, completed a double-blind placebo-controlled crossover study. Participants consumed control oil, 0.7 g EPA + DHA/d (0.7FO), and 1.8 g EPA + DHA/d (1.8FO) capsules in random order, each for an 8-wk intervention period, separated by 12-wk washout periods. Results: In the group as a whole, 8% and 11% lower plasma triacylglycerol concentrations were evident after 0.7FO and 1.8FO, respectively (P < 0.001): significant sex x treatment (P = 0.038) and sex x genotype x treatment (P = 0.032) interactions were observed, and the greatest triacylglycerol-lowering responses (reductions of 15% and 23% after 0.7FO and 1.8FO, respectively) were evident in APOE4 men. Furthermore, lower VLDL-cholesterol (P = 0.026) and higher LDL-cholesterol (P = 0.010), HDL-cholesterol (P < 0.001), and HDL2 (P < 0.001) concentrations were evident after fish-oil intervention. Conclusions: Supplements providing EPA + DHA at doses as low as 0.7 g/d have a significant effect on the plasma lipid profile. The results of the current trial, which used a prospective recruitment approach to examine the responses in population subgroups, are indicative of a greater triacylglycerol-lowering action of long-chain n-3 polyunsaturated fatty acids in males than in females.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human consumption of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is below recommendations, and enriching chicken meat (by incorporating LC n-3 PUFA into broiler diets) is a viable means of increasing consumption. Fish oil is the most common LC n-3 PUFA supplement used but is unsustainable and reduces the oxidative stability of the meat. The objective of this experiment was to compare fresh fish oil (FFO) with fish oil encapsulated (EFO) in a gelatin matrix (to maintain its oxidative stability) and algal biomass at a low (LAG, 11), medium (MAG, 22), or high (HAG, 33 g/kg of diet) level of inclusion. The C22:6n-3 contents of the FFO, EFO, and MAG diets were equal. A control (CON) diet using blended vegetable oil was also made. As-hatched 1-d-old Ross 308 broilers (144) were reared (21 d) on a common starter diet then allocated to treatment pens (4 pens per treatment, 6 birds per pen) and fed treatment diets for 21 d before being slaughtered. Breast and leg meat was analyzed (per pen) for fatty acids, and cooked samples (2 pens per treatment) were analyzed for volatile aldehydes. Concentrations (mg/100 g of meat) of C20:5n-3, C22:5n-3, and C22:6n-3 were (respectively) CON: 4, 15, 24; FFO: 31, 46, 129; EFO: 18, 27, 122; LAG: 9, 19, 111; MAG: 6, 16, 147; and HAG: 9, 14, 187 (SEM: 2.4, 3.6, 13.1) in breast meat and CON: 4, 12, 9; FFO: 58, 56, 132; EFO: 63, 49, 153; LAG: 13, 14, 101; MAG: 11, 15, 102; HAG: 37, 37, 203 (SEM: 7.8, 6.7, 14.4) in leg meat. Cooked EFO and HAG leg meat was more oxidized (5.2 mg of hexanal/kg of meat) than the other meats (mean 2.2 mg/kg, SEM 0.63). It is concluded that algal biomass is as effective as fish oil at enriching broiler diets with C22:6 LC n-3 PUFA, and at equal C22:6n-3 contents, there is no significant difference between these 2 supplements on the oxidative stability of the meat that is produced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Supplementing broiler diets with conventional vegetable oils has little effect on the long-chain n-3 PUFA (LC n-3 PUFA) content of the meat. The present study investigated the effect on fatty acid composition and sensory characteristics of chicken meat when broilers were fed oil extracted from soyabeans (SDASOY) that had been genetically engineered to produce C18 : 4n-3 (stearidonic acid (SDA), 240 mg/g oil). Three diets were fed to 120 birds (eight replicate pens of five birds) from 15 d to slaughter (41–50 d). Diets were identical apart from the oil added to them (45 and 50 g/kg as fed in the grower and finisher phases, respectively), which was either SDASOY, near-isogenic soya (CON) or fish oil (FISH). The LC n-3 PUFA content of the meat increased in the order CON, SDASOY and FISH. In breast meat with skin, the SDA concentration was 522, 13 and 37 (sem 14·4) mg/100 g meat for SDASOY, CON and FISH, respectively. Equivalent values for C20 : 5n-3 (EPA) were 53, 13 and 140 (sem 8·4); for C22 : 5n-3 (docosapentaenoic acid (DPA)) 65, 15 and 101 (sem 3·5); for C22 : 6n-3 (DHA) 19, 9 and 181 (sem 4·4). Leg meat (with skin) values for SDA were 861, 23 and 68 (sem 30·1); for EPA 87, 9 and 258 (sem 7·5); for DPA 95, 20 and 165 (sem 5·0); for DHA 29, 10 and 278 (sem 8·4). Aroma, taste and aftertaste of freshly cooked breast meat were not affected. Fishy aromas, tastes and aftertastes were associated with LC n-3 PUFA content of the meat, being most noticeable in the FISH leg meat (both freshly cooked and reheated) and in the reheated SDASOY leg meat.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fish-oil supplementation can reduce circulating triacylglycerol (TG) levels and cardiovascular risk. This study aimed to assess independent associations between changes in platelet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and fasting and postprandial (PP) lipoprotein concentrations and LDL oxidation status, following fish-oil intervention. Fiftyfive mildly hypertriacylglycerolaemic (TG 1·5–4·0 mmol/l) men completed a double-blind placebo controlled cross over study, where individuals consumed 6 g fish oil (3 g EPA � DHA) or 6 g olive oil (placebo)/d for two 6-week intervention periods, with a 12-week wash-out period in between. Fish-oil intervention resulted in a significant increase in the platelet phospholipid EPA (+491 %, P,0·001) and DHA (+44 %, P,0·001) content and a significant decrease in the arachidonic acid (210 %, P,0·001) and g-linolenic acid (224 %, P,0·001) levels. A 30% increase in ex vivo LDL oxidation (P,0·001) was observed. In addition, fish oil resulted in a significant decrease in fasting and PP TG levels (P,0·001), PP non-esterified fatty acid (NEFA) levels, and in the percentage LDL as LDL-3 (P�0·040), and an increase in LDLcholesterol (P�0·027). In multivariate analysis, changes in platelet phospholipid DHA emerged as being independently associated with the rise in LDL-cholesterol, accounting for 16% of the variability in this outcome measure (P�0·030). In contrast, increases in platelet EPA were independently associated with the reductions in fasting (P�0·046) and PP TG (P�0·023), and PP NEFA (P�0·015), explaining 15–20% and 25% of the variability in response respectively. Increases in platelet EPA � DHA were independently and positively associated with the increase in LDL oxidation (P�0·011). EPA and DHA may have differential effects on plasma lipids in mildly hypertriacylglycerolaemic men.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poor glucose tolerance may be an under-researched contributory factor in the high (10% to 20%) pre-weaning mortality rate observed in pigs. Insulin resistance commences at around week 12 of gestation in the sow, although there are conflicting reports in the literature about the extent to which insulin resistance is modulated by maternal diet. The aim of the study was to determine the effects of supplementing the maternal diet with different dietary oils during either the first half or the second half of gestation on the glucose tolerance of the sow. Sows were offered the control (C: n = 5) diet as pellets or the C diet plus 10% extra energy (h = 16 per group) derived from either. (i) extra pellets; (ii) palm oil; (iii) olive oil; (iv) sunflower oil; or (v) fish oil. Experimental diets were fed during either the first (G1) or second (G2) half of gestation. A glucose tolerance test (GTT) was conducted on day 108 of gestation by administering 0.5g/kg glucose i.v. Blood samples were taken every 5 to 10 min for 90 min post administration. The change in body weight and backfat thickness during gestation was similar but both type and timing of dietary supplementation influenced litter size and weight. With the exception of the sunflower oil group, supplementing the maternal diet in G1 resulted in larger and heavier litters, particularly in mothers offered palm oil. Basal blood glucose concentrations tended to be more elevated in G1 than G2 groups, whilst plasma insulin concentrations were similar Following a GTT, the adjusted area under the curve was greater in G1 compared to G2 sows, despite no differences in glucose clearance. Maternal diet appeared to influence the relationship between glucose curve characteristics following a GTT and litter outcome. In conclusion, the degree of insulin sensitivity can be altered by both the period during which maternal nutritional supplementation is offered and the fatty acid profile of the diet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are widely recognised to have beneficial effects on human health. However, recommended intakes of VLC n-3 PUFA (450 mg/day) are not being met by the diet in the majority of the population mainly because of low consumption of oil-rich fish. Current mean intake of VLC n-3 PUFA by adults is estimated to be about 282 mg/day with EPA and DHA contributing about 244 mg/day. Furthermore, the fact that only about 27% of adults eat any oil-rich fish (excluding canned tuna) and knowledge of the poor conversion of α-linolenic acid to EPA and DHA in vivo, particularly in men, leads to the need to review current dietary sources of these fatty acids. Animal-derived foods are likely to have an important function in increasing intake and studies have shown that feeding fish oils to animals can increase the EPA and DHA content of the resulting food products. This paper highlights the importance of examining current and projected consumption trends of meat and other animal products when exploring the potential impact of enriched foods by means of altering animal diets. When related to current food consumption data, potential dietary intakes of EPA+DHA from foods derived from animals fed enriched diets are calculated to be about 231 mg/day. If widely consumed, such foods could have a significant impact on progression of conditions such as cardiovascular disease. Consideration is also given to the sources of VLC n-3 PUFA in animal diets, with the sustainability of fish oil being questioned and the need to investigate the use of alternative dietary sources such as those of algal origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The beneficial effects of long-chain (C chain >= 20) n-3 PUFA are well documented and, overall, increased intake reduces risk of CVD. Recent evidence also points to a role in reducing, age-related decline in cognitive function. The two key fatty acids are EPA (20:5) and DHA (22:6), with current UK recommendation for adults being 450 mg EPA + DHA/d. Whilst some EPA and DHA can be synthesised in vivo from alpha-linolenic acid, recent data indicate this source to be very limited, Suggesting that EPA and DHA should be classified as dietary essentials. In many parts of Europe the daily intake of EPA + DHA by adults and especially young adults (18-24 years) is < 100 mg/d, since many never eat oily fish. Poultry meat contributes small but worthwhile amounts of EPA+DHA. Studies to enrich the EPA+DHA content of animal-derived foods mainly use fish oil in the diet of the animal. Recent work has shown that such enrichment has the potential to provide to the UK adult diet a daily intake of EPA+DHA of about 230 mg, with poultry meat providing the largest amount (74 mg). There are. however. concerns that the Continued and possibly increased use of fish oils in animals diets is not Sustainable and alternative approaches are being examined, including the genetic modification of certain plants to allow them to synthesise EPA and DHA from shorter-chain precursors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The beneficial effects of long-chain (C chain >= 20) n-3 PUFA are well documented and, overall, increased intake reduces risk of CVD. Recent evidence also points to a role in reducing, age-related decline in cognitive function. The two key fatty acids are EPA (20:5) and DHA (22:6), with current UK recommendation for adults being 450 mg EPA + DHA/d. Whilst some EPA and DHA can be synthesised in vivo from alpha-linolenic acid, recent data indicate this source to be very limited, Suggesting that EPA and DHA should be classified as dietary essentials. In many parts of Europe the daily intake of EPA + DHA by adults and especially young adults (18-24 years) is < 100 mg/d, since many never eat oily fish. Poultry meat contributes small but worthwhile amounts of EPA+DHA. Studies to enrich the EPA+DHA content of animal-derived foods mainly use fish oil in the diet of the animal. Recent work has shown that such enrichment has the potential to provide to the UK adult diet a daily intake of EPA+DHA of about 230 mg, with poultry meat providing the largest amount (74 mg). There are. however. concerns that the Continued and possibly increased use of fish oils in animals diets is not Sustainable and alternative approaches are being examined, including the genetic modification of certain plants to allow them to synthesise EPA and DHA from shorter-chain precursors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of poultry species (broiler or turkey) and genotype (Wrolstad or BUT T8 turkeys and Ross 308 or Cobb 500 broilers) on the efficiency with which dietary longchain n-3 PUFA were incorporated into poultry meat was determined. Broilers and turkeys of both genotypes were fed one of six diets varying in FA composition (two replicates per genotype x diet interaction). Diets contained 50 g/kg added oil, which was either blended vegetable oil (control), or partially replaced with linseed oil (20 or 40 g/kg diet), fish oil (20 or 40 g/kg diet), or a mixture of the two (20 g linseed oil and 20 g fish oil/kg diet). Feeds and samples of skinless breast and thigh meat were analyzed for FA. Wrolstad dark meat was slightly more responsive than BUT T8 (P = 0.046) to increased dietary 18:3 concentrations (slopes of 0.570 and 0.465, respectively). The Ross 308 was also slightly more responsive than the Cobb 500 (P= 0.002) in this parameter (slopes of 0.557 and 0.449). There were no other significant differences between the genotypes. There was some evidence (based on the estimates of the slopes and their associated standard errors) that white turkey meat was more responsive than white chicken meat to 20:5 (slopes of 0.504 and 0.289 for turkeys and broilers, respectively). There was no relationship between dietary 18:3 n-3 content and meat 20:5 and 22:6 contents. If birds do convert 18:3 to higher FA, these acids are not then deposited in the edible tissues.