74 resultados para Filter coefficients
Resumo:
A novel and generic miniaturization methodology for the determination of partition coefficient values of organic compounds in noctanol/water by using magnetic nanoparticles is, for the first time, described. We have successfully designed, synthesised and characterised new colloidal stable porous silica-encapsulated magnetic nanoparticles of controlled dimensions. These nanoparticles absorbing a tiny amount of n-octanol in their porous silica over-layer are homogeneously dispersed into a bulk aqueous phase (pH 7.40) containing an organic compound prior to magnetic separation. The small size of the particles and the efficient mixing allow a rapid establishment of the partition equilibrium of the organic compound between the solid supported n-octanol nano-droplets and the bulk aqueous phase. UV-vis spectrophotometry is then applied as a quantitative method to determine the concentration of the organic compound in the aqueous phase both before and after partitioning (after magnetic separation). log D values of organic compounds of pharmaceutical interest (0.65-3.50), determined by this novel methodology, were found to be in excellent agreement with the values measured by the shake-flask method in two independent laboratories, which are also consistent with the literature data. It was also found that this new technique gives a number of advantages such as providing an accurate measurement of log D value, a much shorter experimental time and a smaller sample size required. With this approach, the formation of a problematic emulsion, commonly encountered in shake-flask experiments, is eliminated. It is envisaged that this method could be applicable to the high throughput log D screening of drug candidates. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Experimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO3, OH, O-3 and O(P-3), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Gas-phase rate coefficients for the atmospherically important reactions of NO3, OH and O-3 are predicted for 55 alpha,beta-unsaturated esters and ketones. The rate coefficients were calculated using a correlation described previously [Pfrang, C., King, M.D., C. E. Canosa-Mas, C.E., Wayne, R.P., 2006. Atmospheric Environment 40, 1170-1179]. These rate coefficients were used to extend structure-activity relations for predicting the rate coefficients for the reactions of NO3, OH or O-3 with alkenes to include alpha,beta-unsaturated esters and ketones. Conjugation of an alkene with an alpha,beta-keto or alpha,beta-ester group will reduce the value of a rate coefficient by a factor of similar to 110, similar to 2.5 and similar to 12 for reaction with NO3, OH or O-3, respectively. The actual identity of the alkyl group, R, in -C(O)R or -C(O)OR has only a small influence. An assessment of the reliability of the SAR is given that demonstrates that it is useful for reactions involving NO3 and OH, but less valuable for those of O-3 or peroxy nitrate esters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the integration of an Utkin observer with the unscented Kalman filter, investigates the performance of the combined observer, termed the unscented Utkin observer, and compares it with an unscented Kalman filter. Simulation tests are performed using a model of a single link robot arm with a revolute elastic joint rotating in a vertical plane. The results indicate that the unscented Utkin observer outperforms the unscented Kalman filter.
Resumo:
A new distributed spam filter system based on mobile agent is proposed in this paper. We introduce the application of mobile agent technology to the spam filter system. The system architecture, the work process, the pivotal technology of the distributed spam filter system based on mobile agent, and the Naive Bayesian filter method are described in detail. The experiment results indicate that the system can prevent spam emails effectively.
Resumo:
In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.
Resumo:
This paper presents the experimental results on the low temperature absorption and dispersion properties for a variety of frequently used infrared filter substrate materials. Index of refraction (n) and transmission spectra are presented for a range of temperatures 300-50 K for the Group IV materials silicon (Si) and germanium (Ge), and Group II-VI materials zinc selenide (ZnSe), zinc sulphide (ZnS) and cadmium telluride (CdTe). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper we report the observation of drifts in the responsivity of cryogenically cooled InSb detector-based infrared filter radiometers which have very strong wavelength dependence. These drifts can result in the increase or decrease of the response of the filter radiometers by over 5%. The origin of these variations was investigated and was shown to arise due to a thin film of ice formed on the multi-layer bandpass filter used to define the spectral response of the filter radiometer. The thin layer of ice interacts with the characteristics of the filter (which itself consists of a number of thin layers) and modifies the filter spectral transmission thus modifying the response of the filter radiometer of which the filter is part of. These observations are particularly relevant to space instruments which use infrared filter radiometers for earth observation. Debris from the spacecraft engines is known to accumulate on cold surfaces of instruments carried on board. The deposition of this debris on cold filters can modify the spectral response of the instruments, which use these filters to define a spectral response. Crown Copyright (c) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
The kinetics of the reactions of the atoms O(P-3), S(P-3), Se(P-3), and Te((3)p) with a series of alkenes are examined for correlations relating the logarithms of the rate coefficients to the energies of the highest occupied molecular orbitals (HOMOs) of the alkenes. These correlations may be employed to predict rate coefficients from the calculated HOMO energy of any other alkene of interest. The rate coefficients obtained from the correlations were used to formulate structure-activity relations (SARs) for reactions of O((3)p), S(P-3), Se (P-3), and Te((3)p) with alkenes. A comparison of the values predicted by both the correlations and the SARs with experimental data where they exist allowed us to assess the reliability of our method. We demonstrate the applicability of perturbation frontier molecular orbital theory to gas-phase reactions of these atoms with alkenes. The correlations are apparently not applicable to reactions of C(P-3), Si(P-3), N(S-4), and Al(P-2) atoms with alkenes, a conclusion that could be explained in terms of a different mechanism for reaction of these atoms.
Resumo:
Rate coefficients for reactions of nitrate radicals (NO3) with (Z)-pent-2-ene, (E)-pent-2-ene, (Z)-hex-2-ene, (E)-hex-2-ene, (Z)-hex-3-ene, (E)-hex-3-ene and (E)-3-methylpent-2-ene were determined to be (6.55 +/- 0.78) x 10(-13) cm(3) molecule(-1) s(-1), (3.78 +/- 0.45) x 10(-13) cm(3) molecule(-1) s(-1), (5.30 +/- 0.73) x 10(-13) cm(3) molecule(-1) s(-1), (3.83 +/- 0.47) x 10(-13) cm(3) molecule(-1) s(-1), (4.37 +/- 0.49) x 10(-13) cm(3) molecule(-1) s(-1), (3.61 +/- 0.40) x 10(-13) cm(3) molecule(-1) s(-1) and (8.9 +/- 1.5) x 10(-12) cm(3) molecule(-1) s(-1), respectively. We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. The experimental results demonstrate a surprisingly large cis-trans (Z-E) effect, particularly in the case of the pent-2-enes, where the ratio of rate coefficients is ca. 1.7. Rate coefficients are discussed in terms of electronic and steric influences, and our results give some insight into the effects of chain length and position of the double bond on the reaction of NO3 with unsaturated hydrocarbons. Atmospheric lifetimes were calculated with respect to important oxidants in the troposphere for the alkenes studied, and NO3-initiated oxidation is found to be the dominant degradation route for (Z)-pent-2-ene, (Z)-hex-3-ene and (E)-3-methylpent-2-ene.
Resumo:
A new man-made target tracking algorithm integrating features from (Forward Looking InfraRed) image sequence is presented based on particle filter. Firstly, a multiscale fractal feature is used to enhance targets in FLIR images. Secondly, the gray space feature is defined by Bhattacharyya distance between intensity histograms of the reference target and a sample target from MFF (Multi-scale Fractal Feature) image. Thirdly, the motion feature is obtained by differencing between two MFF images. Fourthly, a fusion coefficient can be automatically obtained by online feature selection method for features integrating based on fuzzy logic. Finally, a particle filtering framework is developed to fulfill the target tracking. Experimental results have shown that the proposed algorithm can accurately track weak or small man-made target in FLIR images with complicated background. The algorithm is effective, robust and satisfied to real time tracking.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
This paper reports on the design and manufacture of an ultra-wide (5-30µm) infrared edge filter for use in FTIR studies of the low frequency vibrational modes of metallo-proteins. We present details of the spectral design and manufacture of such a filter which meets the demanding bandwidth and transparency requirements of the application, and spectra that present the new data possible with such a filter. A design model of the filter and the materials used in its construction has been developed capable of accurately predicting spectral performance at both 300K and at the reduced operating temperature at 200K. This design model is based on the optical and semiconductor properties of a multilayer filter containing PbTe (IV-VI) layer material in combination with the dielectric dispersion of ZnSe (II-VI) deposited on a CdTe (II-VI) substrate together with the use of BaF2 (II-VII) as an antireflection layer. Comparisons between the computed spectral performance of the model and spectral measurements from manufactured coatings over a wavelength range of 4-30µm and temperature range 300-200K are presented. Finally we present the results of the FTIR measurements of Photosystem II showing the improvement in signal to noise ratio of the measurement due to using the filter, together with a light induced FTIR difference spectrum of Photosystem II.