27 resultados para Field Campaign


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3 – crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We then use the output from two resolutions of the chemistry transport model p-TOMCAT to illustrate the ability of a global model chemical mechanism to capture the chemistry at the rainforest site. The basic model performance is good for NOx and poor for ozone. A box model containing the same chemical mechanism is used to explore the results of the global model in more depth and make comparisons between the two. Without some parameterization of the nighttime boundary layer – free troposphere mixing (i.e. the use of a dilution parameter), the box model does not reproduce the observations, pointing to the importance of adequately representing physical processes for comparisons with surface measurements. We conclude with a discussion of box model budget calculations of chemical reaction fluxes, deposition and mixing, and compare these results to output from p-TOMCAT. These show the same chemical mechanism behaves similarly in both models, but that emissions and advection play particularly strong roles in influencing the comparison to surface measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Satellite data are used to quantify and examine the bias in the outgoing long-wave (LW) radiation over North Africa during May–July simulated by a range of climate models and the Met Office global numerical weather prediction (NWP) model. Simulations from an ensemble-mean of multiple climate models overestimate outgoing clear-sky long-wave radiation (LWc) by more than 20 W m−2 relative to observations from Clouds and the Earth's Radiant Energy System (CERES) for May–July 2000 over parts of the west Sahara, and by 9 W m−2 for the North Africa region (20°W–30°E, 10–40°N). Experiments with the atmosphere-only version of the High-resolution Hadley Centre Global Environment Model (HiGEM), suggest that including mineral dust radiative effects removes this bias. Furthermore, only by reducing surface temperature and emissivity by unrealistic amounts is it possible to explain the magnitude of the bias. Comparing simulations from the Met Office NWP model with satellite observations from Geostationary Earth Radiation Budget (GERB) instruments suggests that the model overestimates the LW by 20–40 W m−2 during North African summer. The bias declines over the period 2003–2008, although this is likely to relate to improvements in the model and inhomogeneity in the satellite time series. The bias in LWc coincides with high aerosol dust loading estimated from the Ozone Monitoring Instrument (OMI), including during the GERBILS field campaign (18–28 June 2007) where model overestimates in LWc greater than 20 W m−2 and OMI-estimated aerosol optical depth (AOD) greater than 0.8 are concurrent around 20°N, 0–20°W. A model-minus-GERB LW bias of around 30 W m−2 coincides with high AOD during the period 18–21 June 2007, although differences in cloud cover also impact the model–GERB differences. Copyright © Royal Meteorological Society and Crown Copyright, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A developing polar low is targeted with dropsonde observations to improve the forecast of its landfall. Accurately forecasting a polar low's strength and location remains a challenge; polar lows form over the ocean in poorly observed regions, therefore initial condition errors may contribute significantly to forecast error. The targeted polar low formed in the Norwegian Sea on 3 March 2008, during the Norwegian IPY-THORPEX field campaign. Two flights, six hours apart, released dense networks of dropsondes into a sensitive region covering the polar low and Arctic front to its west. The impact of the targeted observations is assessed using the limited-area Met Office Unified Model and three-dimensional variational (3D-Var) data assimilation scheme. Forecasts were verified using ECMWF analysis data, which show good agreement with both dropsonde data from a flight through the mature polar low, and 10 m QuikSCAT winds. The impact of the targeted data moved southwards with the polar low as it developed and then hit the Norwegian coast after 24 hours. The results show that the forecast of the polar low is sensitive to the initial conditions; targeted observations from the first flight did not improve the forecast, but those from the second flight clearly improved the forecast polar low position and intensity. However, caution should be applied to attributing the forecast improvement to the assimilation of the targeted observations from a single case-study, especially in this case as the forecast improvement is moderate relative to the spread from an operational ensemble forecast

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of continental boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze cloud-aerosol relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examines thermally induced flows (or “snow breezes”) associated with snow cover in the boreal forests of Canada. Observations from a lake less than 4 km across were made as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) winter field campaign. These are interpreted with the aid of idealized three-dimensional mesoscale model simulations representing the forest-lake contrast. Typically, strong forest-lake temperature contrasts develop in the lowest 50 m of the atmosphere during the morning. The resulting pressure gradients induce low-level onshore wind components across the lake. This snow breeze persists into the afternoon provided that large-scale winds remain light. A characteristic snow breeze signature is clearly evident in wind observations averaged over 27 days of data, in agreement with model simulations. The study suggests that snow breezes will regularly develop over the many larger lakes and other unvegetated areas in the region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strong winds equatorwards and rearwards of a cyclone core have often been associated with two phenomena, the cold conveyor belt (CCB) jet and sting jets. Here, detailed observations of the mesoscale structure in this region of an intense cyclone are analysed. The {\it in-situ} and dropsonde observations were obtained during two research flights through the cyclone during the DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) field campaign. A numerical weather prediction model is used to link the strong wind regions with three types of ``air streams'', or coherent ensembles of trajectories: two types are identified with the CCB, hooking around the cyclone center, while the third is identified with a sting jet, descending from the cloud head to the west of the cyclone. Chemical tracer observations show for the first time that the CCB and sting jet air streams are distinct air masses even when the associated low-level wind maxima are not spatially distinct. In the model, the CCB experiences slow latent heating through weak resolved ascent and convection, while the sting jet experiences weak cooling associated with microphysics during its subsaturated descent. Diagnosis of mesoscale instabilities in the model shows that the CCB passes through largely stable regions, while the sting jet spends relatively long periods in locations characterized by conditional symmetric instability (CSI). The relation of CSI to the observed mesoscale structure of the bent-back front and its possible role in the cloud banding is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a combination of idealized radiative transfer simulations and a case study from the first field campaign of the Saharan Mineral Dust Experiment (SAMUM) in southern Morocco, this paper provides a systematic assessment of the limitations of the widely used Spinning Enhanced Visible and Infrared Imager (SEVIRI) red-green-blue (RGB) thermal infrared dust product. Both analyses indicate that the ability of the product to identify dust, via its characteristic pink coloring, is strongly dependent on the column water vapor, the lower tropospheric lapse rate, and dust altitude. In particular, when column water vapor exceeds ∼20–25 mm, dust presence, even for visible optical depths of the order 0.8, is effectively masked. Variability in dust optical properties also has a marked impact on the imagery, primarily as a result of variability in dust composition. There is a moderate sensitivity to the satellite viewing geometry, particularly in moist conditions. The underlying surface can act to confound the signal seen through variations in spectral emissivity, which are predominantly manifested in the 8.7μm SEVIRI channel. In addition, if a temperature inversion is present, typical of early morning conditions over the Sahara and Sahel, an increased dust loading can actually reduce the pink coloring of the RGB image compared to pristine conditions. Attempts to match specific SEVIRI observations to simulations using SAMUM measurements are challenging because of high uncertainties in surface skin temperature and emissivity. Recommendations concerning the use and interpretation of the SEVIRI RGB imagery are provided on the basis of these findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent field campaign in southwest England used numerical modeling integrated with aircraft and radar observations to investigate the dynamic and microphysical interactions that can result in heavy convective precipitation. The COnvective Precipitation Experiment (COPE) was a joint UK-US field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly due to the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the US. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve NWP model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the UK BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360-deg volume scans over 10 elevation angles approximately every 5 minutes, and was augmented by two UK Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper: (i) provides an overview of the COPE field campaign and the resulting dataset; (ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone; and (iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The North Atlantic Marine Boundary Layer Experiment (NAMBLEX), involving over 50 scientists from 12 institutions, took place at Mace Head, Ireland (53.32° N, 9.90° W), between 23 July and 4 September 2002. A wide range of state-of-the-art instrumentation enabled detailed measurements of the boundary layer structure and atmospheric composition in the gas and aerosol phase to be made, providing one of the most comprehensive in situ studies of the marine boundary layer to date. This overview paper describes the aims of the NAMBLEX project in the context of previous field campaigns in the Marine Boundary Layer (MBL), the overall layout of the site, a summary of the instrumentation deployed, the temporal coverage of the measurement data, and the numerical models used to interpret the field data. Measurements of some trace species were made for the first time during the campaign, which was characterised by predominantly clean air of marine origin, but more polluted air with higher levels of NOx originating from continental regions was also experienced. This paper provides a summary of the meteorological measurements and Planetary Boundary Layer (PBL) structure measurements, presents time series of some of the longer-lived trace species (O3, CO, H2, DMS, CH4, NMHC, NOx, NOy, PAN) and summarises measurements of other species that are described in more detail in other papers within this special issue, namely oxygenated VOCs, HCHO, peroxides, organo-halogenated species, a range of shorter lived halogen species (I2, OIO, IO, BrO), NO3 radicals, photolysis frequencies, the free radicals OH, HO2 and (HO2+Σ RO2), as well as a summary of the aerosol measurements. NAMBLEX was supported by measurements made in the vicinity of Mace Head using the NERC Dornier-228 aircraft. Using ECMWF wind-fields, calculations were made of the air-mass trajectories arriving at Mace Head during NAMBLEX, and were analysed together with both meteorological and trace-gas measurements. In this paper a chemical climatology for the duration of the campaign is presented to interpret the distribution of air-mass origins and emission sources, and to provide a convenient framework of air-mass classification that is used by other papers in this issue for the interpretation of observed variability in levels of trace gases and aerosols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Geostationary Earth Radiation Budget Intercomparison of Longwave and Shortwave radiation (GERBILS) was an observational field experiment over North Africa during June 2007. The campaign involved 10 flights by the FAAM BAe-146 research aircraft over southwestern parts of the Sahara Desert and coastal stretches of the Atlantic Ocean. Objectives of the GERBILS campaign included characterisation of mineral dust geographic distribution and physical and optical properties, assessment of the impact upon radiation, validation of satellite remote sensing retrievals, and validation of numerical weather prediction model forecasts of aerosol optical depths (AODs) and size distributions. We provide the motivation behind GERBILS and the experimental design and report the progress made in each of the objectives. We show that mineral dust in the region is relatively non-absorbing (mean single scattering albedo at 550 nm of 0.97) owing to the relatively small fraction of iron oxides present (1–3%), and that detailed spectral radiances are most accurately modelled using irregularly shaped particles. Satellite retrievals over bright desert surfaces are challenging owing to the lack of spectral contrast between the dust and the underlying surface. However, new techniques have been developed which are shown to be in relatively good agreement with AERONET estimates of AOD and with each other. This encouraging result enables relatively robust validation of numerical models which treat the production, transport, and deposition of mineral dust. The dust models themselves are able to represent large-scale synoptically driven dust events to a reasonable degree, but some deficiencies remain both in the Sahara and over the Sahelian region, where cold pool outflow from convective cells associated with the intertropical convergence zone can lead to significant dust production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to address the characteristics of urban microclimates that affect the building energy performance and implementation of the renewable energy technologies. An experimental campaign was designed to investigate the microclimate parameters including air and surface temperature, direct and diffuse solar irradiation levels on both horizontal and vertical surfaces, wind speed and direction in a dense urban area in London. The outcomes of this research reveal that the climatic parameters are significantly influenced by the attributes of urban textures, which highlight the need for both providing the microclimatic information and using them in buildings design stages. This research provides a valuable set of microclimatic information for a dense urban area in London. According to the outcomes of this research, the feasibility study for implementation of renewable energy technologies and the thermal/ energy performance assessment of buildings need to be conducted using the microclimatic information rather than the meteorological weather data mostly collected from non-urban environments.